chứng tỏ với x;y;z là số tự nhiên thì
4x(x+y)(x+y+z)(x+z)+y2z2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Ta có: \(m^2+1\ne0;\forall m\Rightarrow\) hàm số là hàm bậc nhất với mọi m
b.
\(m^2+1\ge1>0\) ; \(\forall m\Rightarrow\) hàm đồng biến với mọi m
a﴿ Cả 2 vế không âm nên Bình phương 2 vế ta được:
|x + y|2 ≤ ﴾|x| + |y|﴿2
<=> ﴾x+y﴿﴾x+y﴿ ≤ ﴾|x| + |y|﴿. ﴾|x| + |y|﴿
<=> x2 + 2xy + y2 ≤ x2+ 2.|x||y| + y2
<=> xy ≤ |xy| Điều này luôn đúng với mọi x; y
Vậy bất đẳng thức đã cho đúng. Dấu "= " khi |xy| = xy <=> x; y cùng dấu
Với mọi x,y thuộc Q ta luôn có x bé hơn hoặc bằng |y| và -y
=> x+ybes hơn hoặc bằng |x|+|y| và - x-ybes hơn hoặc bằng |x|+|y| hay x+y lớn hơn hoặc bằng -(|x|+|y|)
Do đó -(|x|+|y|) <_ x+y <_ |x|+|y|
Vậy (x+y) lớn hơn hoặc bằng |x|+|y|
Đặt \(t=x-1\)
Thế vào:\(t\left(t-1\right)+5=t^2-t+5\)
\(=t^2-2.\frac{1}{2}.t+\left(\frac{1}{2}\right)^2+5-\frac{1}{4}\)
\(=\left(t-\frac{1}{2}\right)^2+\frac{19}{4}>0\)
Ta có :
\(VT=\left(x-1\right)\left(x-2\right)+5=x^2-x-2x+2+5=x^2-3x+7\)
\(VT=\left(x^2-3x+\frac{9}{4}\right)+\frac{19}{4}=\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]+\frac{19}{4}=\left(x-\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}>0\)
Vậy \(\left(x-1\right)\left(x-2\right)+5>0\) với mọi x
Chúc bạn học tốt ~
Ta có: x 2 – 6x + 10 = x 2 – 2.x.3 + 9 + 1 = x - 3 2 + 1
Vì x - 3 2 ≥ 0 với mọi x nên x - 3 2 + 1 > 0 mọi x
Vậy x 2 – 6x + 10 > 0 với mọi x.(đpcm)
Ta có: 4x – x 2 – 5 = -( x 2 – 4x + 4) – 1 = - x - 2 2 -1
Vì x - 2 2 ≥ 0 với mọi x nên – x - 2 2 ≤ 0 với mọi x.
Suy ra: - x - 2 2 -1 ≤ -1 với mọi x
Vậy 4x – x 2 – 5 < 0 với mọi x.(đpcm)
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4\left(x^2+xy+xz\right)\left(x^2+xy+xz+yz\right)+y^2z^2\)
Đặt \(x^2+xy+xz=a\) , ta có:
\(M=4a\left(a+yz\right)+y^2z^2=4a^2+4ayz+y^2z^2=\left(2a+yz\right)^2\)
\(M=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương với \(x;y;z\in N\)