cho tam giác ABC vuông tại a , có góc B=60 và BC= 2AB
1. Tính số đo góc C
2.Tia phân giác góc B cắt canh AC tại điểm D. Trên đoạn BC lấy điểm H sao cho BH=BA . chứng minh tam giác ABD=tam giác HBD
3. Chứng minh DH là đường trung trực của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBHD có
BA=BH
\(\widehat{ABD}=\widehat{HBD}\)
BD chung
Do đó: ΔBAD=ΔBHD
a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(BA=BH\left(gt\right)\)
\(\widehat{ABD}=\widehat{HBD}\)(ad là tia phân giác của \(\widehat{B}\))
\(BD\)là cạnh chung
Do đó: \(\Delta ABD=\Delta HBD\left(c.g.c\right)\)
Bn tự vẽ hình nha
a/ xét 🔼ABD và🔼HDB có:
AB=HB(GT)
ABD=DBH(do bd là phân giác của góc b)
cạnh BD chung
=>🔼ABD=🔼HDB(C.G.C)
b/ ta có 🔼ABD=🔼HDB( theo a)
<=>BAD= BDH=90 độ
=> dh vuông góc với bc
c/ vì tam giác ABC vuông tại A=> góc b + góc c = 90 độ => góc b = 30 độ
Vì db là phân giác của góc b=> gócDBC=15 độ
Xét tam giác DBC có DBC+DCB+BDC=180 độ ( định lí tổng 3 góc)
=> BDC=180-60-15=105 độ
Đúng hơm bn
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)
\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)
hay \(\widehat{ACB}=30^0\)
Vậy: \(\widehat{ACB}=30^0\)
b) Xét ΔADB và ΔEDB có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔADB=ΔEDB(c-g-c)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay DE\(\perp\)BC(đpcm)
c) Ta có: BE+EC=BC(E nằm giữa B và C)
BA+AM=BM(A nằm giữa B và M)
mà BE=BA(ΔBED=ΔBAD)
và BC=BM(gt)
nên EC=AM
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔDAB=ΔDEB)
AM=EC(cmt)
Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)
nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
nên \(\widehat{ADM}+\widehat{ADE}=180^0\)
\(\Leftrightarrow\widehat{EDM}=180^0\)
hay E,D,M thẳng hàng(đpcm)
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
bạn vẽ hình đi
Bạn ơi ! Không có hình làm kiểu gì >_<
#Huyen#