tìm GTNN của A = x - 2√x-2 +3
mình cần gấp help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x^2+6x+3-2x^2-5x-2}{x^2+2x+1}=3-\frac{2\left(x^2+\frac{2.5}{4}x+\frac{25}{16}+\frac{7}{16}\right)}{\left(x+1\right)^2}=3-\frac{2\left(x+\frac{5}{4}\right)^2+\frac{7}{8}}{\left(x+1\right)^2}\)
lập luận giải nốt nha
ĐK:\(x\ge2\)
\(A=x-2\sqrt{x-2}+3=x-2-2\sqrt{x-2}+1+4=\left(\sqrt{x-2}-1\right)^2+4\)Mà ta có \(\left(\sqrt{x-2}-1\right)^2\ge0\)\(\Leftrightarrow\)\(\left(\sqrt{x-2}-1\right)^2+4\ge4\Leftrightarrow A\ge4\)
Dấu bằng xảy ra khi \(\sqrt{x-2}-1=0\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)
Vậy GTNN của A là 4
Đây là cách làm của mình thôi, không biết có đúng không.
A = x - 2 \(\sqrt{x}\)- 2+3
= x \(-2\sqrt{x}+1\)
= \((\sqrt{x}-1)^2\)
Mà \((\sqrt{x}-1)^2\ge0\)
=> A \(\ge0\)
Vậy GTNN của A là 0 khi x = 1