phân tích đa thức thành nhân tử 4-4y+y^2-25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
\(x^2-25-4xy+4y^2\)
\(=\left(x^2-4xy+4y^2\right)-25\)
\(=\left[x^2-2\cdot x\cdot2y+\left(2y\right)^2\right]-25\)
\(=\left(x-2y\right)^2-5^2\)
\(=\left(x-2y-5\right)\cdot\left(x-2y+5\right)\)
a) x2 - y2 - 4x + 4y
= (x2 - 4x + 4) - (y2 - 4y + 4)
= (x - 2)2 - (y - 2)2
= (x - 2 - y + 2)(x - 2 + y - 2)
= (x - y)(x + y - 4)
b) (xy + 4)2 - 4(x + y)2
= (xy + 4)2 - [2(x + y)]2
= (xy + 4)2 - (2x + 2y)2
= (xy + 4 - 2x - 2y)(xy + 4 + 2x + 2y)
c) 25 - x2 + 2xy - y2
= 25 - (x2 - 2xy + y2)
= 52 - (x - y)2
=> (5 - x + y)(5 + x - y)
a) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x+y\right)\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)
b) \(\left(xy+4\right)^2-4\left(x+y\right)^2=\left(xy+4\right)^2-\left(2x+2y\right)^2=\left(xy+4+2x+2y\right)\left(xy+4-2x-2y\right)\)
c) \(25-x^2+2xy-y^2=25-\left(x^2-2xy+y^2\right)=5^2-\left(x-y\right)^2=\left(5+x-y\right)\left(5-x+y\right)\)
4-4y + y2 - 25
= (2-y)2 - 25
= (2-y-5).(2-y+5)
= -(y+3).(7-y)
\(4-4y+y^2-25\)
\(=\left(4-4y+y^2\right)-25\)
\(=\left(2-y\right)^2-5^2\)
\(=\left(2-y-5\right)\left(2-y+5\right)\)
\(=\left(3-y\right)\left(7-y\right)\)