Cho tam giác ABC( AB<AC).Gọi M là trung điểm của BC.Trên tia đối của tia MA lấy điểm E sao cho MA=ME
a, Chứng minh:AC=BE và AC//BE.
b, Gọi D là trung điểm của cạnh AB.Trên tia đối của tia DE lấy điểm F sao cho FD=DE.Chứng minh A là trung điểm của CF.
Giúp đỡ mình nhé mình đang gấp.
a) Xét \(\Delta AMC\)và \(\Delta EMB\)
+ AM = BM(gt)
+ MA = ME (gt)
+ Góc AMC = góc EMD (đối đỉnh)
Vậy hai tam giác trên bằng nhau theo trường hợp (c-g-c)
Ta có \(\widehat{EBM}=\widehat{ACM}\)(hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên AC//BE
BE = AC (hai cạnh tương ứng)
b) Xét \(\Delta ADF\)và \(\Delta BDE\)
+ FD = DE(gt)
+ AD = BD (gt)
+ Góc ADF bằng góc BDE (đối đỉnh)
Vậy hai tam giác trên bằng nhau theo TH c.g.c
Ta suy ra được AF = BE
Và góc EBD = góc DAF (hai góc tương ứng)
Mà hai góc này nằm ở vị trí so le trong nên AF//BE
Lại có AF và AC cùng song song với BE nên A,F,C thẳng hàng(1)
BE = AC = AF (cmt) (2)
Từ (1) và (2) ta có A là trung điểm CF
Thank you