Tìm các số tự nhiên n sao cho
a) n+20 chia hết cho n+2
b) 2n+18 chia hết cho n+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Rightarrow2\left(n+3\right)-38⋮\left(n+3\right)\)
Mà \(n\in N\Rightarrow n+3\ge3\)
\(\Rightarrow\left(n+3\right)\inƯ\left(38\right)=\left\{19;38\right\}\)
\(\Rightarrow n\in\left\{16;35\right\}\)
b) \(\Rightarrow5\left(n+5\right)-74⋮\left(n+5\right)\)
Do \(n\in N\Rightarrow n+5\ge5\)
\(\Rightarrow\left(n+5\right)\inƯ\left(74\right)=\left\{37;74\right\}\)
\(\Rightarrow n\in\left\{32;69\right\}\)
\(a,2n-32⋮n+3\Rightarrow2\left(n+3\right)-38⋮n+3\\ \Rightarrow n+3\inƯ\left(38\right)=\left\{1;2;19;38\right\}\\ \Rightarrow n\in\left\{16;35\right\}\\ b,5n-49⋮n+5\Rightarrow5\left(n+5\right)-74⋮n+5\\ \Rightarrow n+5\inƯ\left(74\right)=\left\{1;2;37;74\right\}\\ \Rightarrow n\in\left\{32;69\right\}\)
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
\(a,n+20⋮n+2\)
\(\Leftrightarrow n+2+18⋮n+2\)
\(\Leftrightarrow18⋮n+2\)
Vì n là stn
=> n + 2> 2
Ta có bảng:
Vậy.........
\(b,2n+18⋮n+3\)
\(\Leftrightarrow2\left(n+3\right)+12⋮n+3\)
\(\Leftrightarrow12⋮n+3\)
Vì n là stn => n + 3 > 3
Ta có bảng
Vậy