cho tam giác ABC có B = 90 độ, BA=BC. Gọi M là trung điểm của AC. a) chứng minh tam giác AMB= tam giác CMB. b) chứng minh MB vuông góc với AC. c) từ C kẻ đường thảng vuông góc với AC tại I và cắt đường thẳng AH tại E, chứng minh H là trung điểm của AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
CM: a) Ta có : góc BAD + góc DAC = 900 + góc DAC = góc BAC (1)
Mà góc BAC = 900 + BCA (2)
Từ (1) và (2) suy ra góc DAC = góc DCA
=> t/giác ADC là t/giác cân tại D
Ta lại có: góc BAD + góc DAE = 1800 (kề bù)
=> góc DAE = 1800 - góc BAD = 1800 - 900 = 900
Mà góc CAE = 900 - góc DAC (3)
góc ACE = 900 - góc BCA (4)
Và góc DAC = góc DCA (cmt) (5)
Từ (3);(4);(5) suy ra góc EAC = góc ACE
=> t/giác AEC là t/giác cân tại E
b) Ta có: t/giác ADC cân tại D(cmt) => AD = DC
t/giác AEC cân tại E (Cmt) => EA = EC
Xét t/giác ADE và t/giác CDE
có AE = CE (cmt)
AD = DC (Cmt)
DE :chung
=> t/giác ADE = t/giác CDE (c.c.c)
=> góc ADE = góc EDC (hai góc tương ứng)
Xét t/giác ADN và t/giác CDN
có góc DAN = góc DCN (cm câu a)
DA = DC (Cmt)
góc ADN = góc CDN (cmt)
=> t/giác ADN = t/giác CDN (g.c.g)
=> AN = CN (hai cạnh tương ứng) => N là trung điểm của AC
=> góc DNA = góc DNC (hai góc tương ứng)
Mà góc DNA + góc DNC = 1800 (kề bù)
=> 2 ^DNA = 1800
=> ^DNA = 1800 : 2
=> góc DNA = 900
c) Ta có: góc ADC là góc ngoài của t/giác ADB
=> góc ADC = góc DAB + góc B = 900 + 300 = 1200
Xét t/giác ADC có góc ADC + góc DCA + góc CAD = 1800 (tổng 3 góc của 1 t/giác)
=> 2.^ DCA = 1800 - góc ADC = 1800 - 1200 = 600
=> góc DCA = 600 : 2 = 300
=> góc DCA = góc B = 300
=> t/giác BAC là t/giác cân tại A