K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: SỐ cách xếp là;

5!*6!*2=172800(cách)

b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)

 

16 tháng 10 2019

Đáp án C

Xét 2 khả năng:

+) Trường hợp ở giữa có 3 ghế  có thể xếp nam  ở bên phải hoặc trái nên số cách xếp

là 2.4!.2!=96 

+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống.

Tương ứng số cách sắp xếp là  2.2.4!.2!=192 

Vậy số cách sắp xếp là 192 + 96 = 288 

20 tháng 3 2019

Xét 2 khả năng:

+) Trường hợp ở giữa có 3 ghế  có thể xếp nam  ở bên phải hoặc trái nên số cách xếp 

là  2 . 4! . 2! = 96  

+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống. Tương ứng số cách sắp xếp là 2 . 2 . 4! . 2! = 192

Vậy số cách sắp xếp là 192 + 96 = 288

Đáp án cần chọn là C

2 tháng 12 2018

Đáp án C

Xét 2 khả năng:

+) Trường hợp ở giữa có 3 ghế  có thể xếp nam  ở bên phải hoặc trái nên số cách xếp 

2.4!.2!=96

+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống

Tương ứng số cách sắp xếp là 2.2.4!.2!=192

Vậy số cách sắp xếp là 192 + 96 = 288

14 tháng 9 2017

Đáp án C

9 tháng 12 2017

        ·     Gọi nhóm I là nhóm ghế của 4 bạn nam, số cách xếp là 4!, tương tự với 2 bạn nữ là nhóm II với số cách xếp là 2!.

        ·       Rõ ràng khi xếp 6 bạn này vào hàng 9 ghế thì ta còn 3 ghế trống. Chia 9 hàng ghế này thành 5 phần có thứ tự, trong đó 2 phần bất kì nào dành cho nhóm I và nhóm II thì 3 phần còn lại sẽ là 3 chiếc ghế trống.

        ·       Số cách xếp 2 nhóm vào 9 hàng ghế sao cho nam ngồi liền nhau, nữ ngồi liền nhau là:   Coi nhóm I, nhóm II và 1 ghế trống ở giữa 2 nhóm này là 1 nhóm đại diện, số nhóm đại diện là 2!. Lúc này 9 ghế hàng ngang thì còn lại 2 ghế trống. Tương tự chia 9 hàng ghế làm 3 phần với ý tưởng khi nhóm đại diện rơi vào 1 phần nào đó thì 2 phần còn lại sẽ là ghế trống, khi đó số cách xếp nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có đúng 1 ghế trống là: 

Vậy số cách xếp cần tìm là: 

chọn B.

8 tháng 9 2019

Số cách chọn 2 nam đứng ở đầu và cuối là  .

 Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là  .

 Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:

Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:

Chọn D.

15 tháng 7 2019

a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.

Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.

Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Xếp nữ vào 4 ghế đó. Có 4! cách.

Vậy có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.

b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.

Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

Theo quy tắc nhân, có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

13 tháng 8 2018

Để xác định, các ghế được đánh số từ 1 đến 10 tính từ trái sang phải.

a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có 5 ! 2  cách xếp.

Nếu các bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có  5 ! 2 cách xếp nam và nữ.

Vậy có tất cả 2. 5 ! 2 cách xếp nam nữ ngồi xen kẽ nhau.

b) Các bạn nam được bố trí ngồi ở các ghế từ k đến k + 4, k = 1, 2, 3, 4, 5, 6. Trong mỗi trường hợp có  5 ! 2 cách xếp nam và nữ.

Vậy có 6. 5 ! 2 cách xếp mà các bạn nam ngồi cạnh nhau.