có 4 nam và 6 nữ. Hỏi có bao nhiêu cách xếp tất cả thành một hàng ngang sao cho không có 2 nam ngồi cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: SỐ cách xếp là;
5!*6!*2=172800(cách)
b: Số cách xếp là \(6!\cdot5!=86400\left(cách\right)\)
Đáp án C
Xét 2 khả năng:
+) Trường hợp ở giữa có 3 ghế có thể xếp nam ở bên phải hoặc trái nên số cách xếp
là 2.4!.2!=96
+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống.
Tương ứng số cách sắp xếp là 2.2.4!.2!=192
Vậy số cách sắp xếp là 192 + 96 = 288
Xét 2 khả năng:
+) Trường hợp ở giữa có 3 ghế có thể xếp nam ở bên phải hoặc trái nên số cách xếp
là 2 . 4! . 2! = 96
+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống. Tương ứng số cách sắp xếp là 2 . 2 . 4! . 2! = 192
Vậy số cách sắp xếp là 192 + 96 = 288
Đáp án cần chọn là C
Đáp án C
Xét 2 khả năng:
+) Trường hợp ở giữa có 3 ghế có thể xếp nam ở bên phải hoặc trái nên số cách xếp là
2.4!.2!=96
+) Trường hợp ở giữa có 2 ghế thì ghế ngoài cùng bên phải hoặc bên trái sẽ trống
Tương ứng số cách sắp xếp là 2.2.4!.2!=192
Vậy số cách sắp xếp là 192 + 96 = 288
· Gọi nhóm I là nhóm ghế của 4 bạn nam, số cách xếp là 4!, tương tự với 2 bạn nữ là nhóm II với số cách xếp là 2!.
· Rõ ràng khi xếp 6 bạn này vào hàng 9 ghế thì ta còn 3 ghế trống. Chia 9 hàng ghế này thành 5 phần có thứ tự, trong đó 2 phần bất kì nào dành cho nhóm I và nhóm II thì 3 phần còn lại sẽ là 3 chiếc ghế trống.
· Số cách xếp 2 nhóm vào 9 hàng ghế sao cho nam ngồi liền nhau, nữ ngồi liền nhau là: Coi nhóm I, nhóm II và 1 ghế trống ở giữa 2 nhóm này là 1 nhóm đại diện, số nhóm đại diện là 2!. Lúc này 9 ghế hàng ngang thì còn lại 2 ghế trống. Tương tự chia 9 hàng ghế làm 3 phần với ý tưởng khi nhóm đại diện rơi vào 1 phần nào đó thì 2 phần còn lại sẽ là ghế trống, khi đó số cách xếp nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có đúng 1 ghế trống là:
Vậy số cách xếp cần tìm là:
chọn B.
Số cách chọn 2 nam đứng ở đầu và cuối là .
Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là .
Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:
Chọn D.
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
Để xác định, các ghế được đánh số từ 1 đến 10 tính từ trái sang phải.
a) Nếu các bạn nam ngồi ở các ghế ghi số lẻ thì các bạn nữ ngồi ở các ghế còn lại. Có 5! cách xếp bạn nam, 5! cách xếp bạn nữ. Tất cả có 5 ! 2 cách xếp.
Nếu các bạn nam ngồi ở các ghế ghi số chẵn, các bạn nữ ngồi ở các ghế còn lại thì có 5 ! 2 cách xếp nam và nữ.
Vậy có tất cả 2. 5 ! 2 cách xếp nam nữ ngồi xen kẽ nhau.
b) Các bạn nam được bố trí ngồi ở các ghế từ k đến k + 4, k = 1, 2, 3, 4, 5, 6. Trong mỗi trường hợp có 5 ! 2 cách xếp nam và nữ.
Vậy có 6. 5 ! 2 cách xếp mà các bạn nam ngồi cạnh nhau.