K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2021

\(\left\{{}\begin{matrix}\dfrac{x+2}{y-1}=\dfrac{x-4}{y+2}\\\dfrac{2x+3}{y-1}=\dfrac{4x+1}{2y+1}\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}\left(x+2\right)\left(y+2\right)=\left(y-1\right)\left(x-\text{4}\right)\\\left(2x+3\right)\left(2y+1\right)=\left(y-1\right)\left(4x+1\right)\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}xy+2x+2y+4=xy-4y-x+4\\4xy+2x+6y+3=4xy-4x+y-1\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}3x+6y=0\\6x+5y=-4\end{matrix}\right.\)

 

\(\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=\dfrac{4}{7}\end{matrix}\right.\)(TM)

2 tháng 2 2021

\(\left\{{}\begin{matrix}5\left(x-y\right)-3\left(2x+3y\right)=12\\3\left(x+2y\right)-4\left(x+2y\right)=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5x-5y-6x-9y=12\\3x+6y-4x-8y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-x-14y=12\\-x-2y=5\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=-\dfrac{26}{3}\\y=-\dfrac{7}{12}\end{matrix}\right.\)

Vậy HPT có nghiệm (x;y) = (\(-\dfrac{26}{3};-\dfrac{7}{12}\))

2) Ta có: \(\left\{{}\begin{matrix}\sqrt{3x-1}-\sqrt{2y+1}=1\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{3x-1}-2\sqrt{2y+1}=2\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-5\sqrt{2y+1}=-10\\\sqrt{3x-1}-\sqrt{2y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2y+1}=2\\\sqrt{3x-1}-2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+1=4\\3x-1=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y=3\\3x=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{10}{3}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{10}{3}\\y=\dfrac{3}{2}\end{matrix}\right.\)

3) Ta có: \(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-2}+2\sqrt{y-3}=6\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5\sqrt{y-3}=10\\\sqrt{x-2}+\sqrt{y-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{y-3}=2\\\sqrt{x-2}+2=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-3=4\\x-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

4 tháng 10 2017

Ngồi gõ cả tiếng rồi ngộ ra mới out nick :|

\(pt\left(2\right)\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-\sqrt{y}-\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+12}-2\sqrt{y}-\left(\sqrt{x+2}-\sqrt{y}\right)=0\)

\(\Leftrightarrow\dfrac{2\left(x-y\right)^2+10x-6y+12-4y}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)

\(\Leftrightarrow\dfrac{2\left(x-y+3\right)\left(x-y+2\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{x+2-y}{\sqrt{x+2}+\sqrt{y}}=0\)

\(\Leftrightarrow\left(x-y+2\right)\left(\dfrac{2\left(x-y+3\right)}{\sqrt{2\left(x-y\right)^2+10x-6y+12}+2\sqrt{y}}-\dfrac{1}{\sqrt{x+2}+\sqrt{y}}\right)=0\)

\(\Rightarrow x=y-2\). Thay vào \(pt(1)\) có:

\(pt\left(1\right)\Leftrightarrow\sqrt{y^2-8\left(y-2\right)+9}-\sqrt[3]{\left(y-2\right)y+12-6\left(y-2\right)}\le1\)

\(\Leftrightarrow\sqrt{y^2-8y+25}-\sqrt[3]{y^2-8y+24}\le1\)

\(\Leftrightarrow\left(\sqrt{y^2-8y+25}-3\right)-\left(\sqrt[3]{y^2-8y+24}-2\right)\le0\)

\(\Leftrightarrow\dfrac{y^2-8y+25-9}{\sqrt{y^2-8y+25}+3}-\dfrac{y^2-8y+24-8}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)

\(\Leftrightarrow\dfrac{\left(y-4\right)^2}{\sqrt{y^2-8y+25}+3}-\dfrac{\left(y-4\right)^2}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\le0\)

\(\Leftrightarrow\left(y-4\right)^2\left(\dfrac{1}{\sqrt{y^2-8y+25}+3}-\dfrac{1}{\sqrt[3]{\left(y^2-8y+24\right)^2}+4+2\sqrt[3]{y^2-8y+24}}\right)\le0\)

\(\Rightarrow y=4\Rightarrow x=y-2=4-2=2\)

Vậy \(x=2;y=4\)

4 tháng 10 2017

tội nghiệp :))

NV
10 tháng 7 2019

a/ Bạn tự giải

b/ ĐKXĐ:...

Cộng vế với vế: \(\frac{x-y}{y+12}=3\Rightarrow x-y=3y+36\Rightarrow x=4y+36\)

Thay vào pt đầu: \(\frac{4y+36}{y}-\frac{y}{y+12}=1\)
Đặt \(\frac{y+12}{y}=a\Rightarrow4a-\frac{1}{a}=1\Rightarrow4a^2-a-1=0\)

\(\Rightarrow a=\frac{1\pm\sqrt{17}}{8}\) \(\Rightarrow\frac{y+12}{y}=\frac{1\pm\sqrt{17}}{8}\)

\(\Rightarrow\left[{}\begin{matrix}y+12=y\left(\frac{1+\sqrt{17}}{8}\right)\\y+12=y\left(\frac{1-\sqrt{17}}{8}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(\frac{-7+\sqrt{17}}{8}\right)y=12\\\left(\frac{-7-\sqrt{17}}{8}\right)y=12\end{matrix}\right.\) \(\Rightarrow y=...\)

Chắc bạn ghi sai đề, nghiệm quá xấu

3/ \(\Leftrightarrow\left\{{}\begin{matrix}3x^2+y^2=5\\3x^2-9y=3\end{matrix}\right.\) \(\Rightarrow y^2+9y=2\Rightarrow y^2+9y-2=0\Rightarrow y=...\)

4/ ĐKXĐ:...

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{3x-1}-3\sqrt{2y+1}=3\\2\sqrt{3x-1}+3\sqrt{2y+1}=12\end{matrix}\right.\)

\(\Rightarrow5\sqrt{3x-1}=15\Rightarrow\sqrt{3x-1}=3\Rightarrow x=\frac{10}{3}\)

\(\sqrt{2y+1}=\sqrt{3x-1}-1=3-1=2\Rightarrow2y+1=4\Rightarrow y=\frac{3}{2}\)