Tìm GTLN của BT P=√(x-2)/x
Giải chi tiết giúp mk với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt:
\(P=\frac{x^2+1}{x^2-x+1}\)
\(\Leftrightarrow\left(P-1\right)x^2-x+P-1=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=1^2-4\left(P-1\right)\left(P-1\right)\ge0\)
\(\Leftrightarrow4P^2-8P+3\le0\)
\(\Leftrightarrow\frac{1}{2}\le P\le\frac{3}{2}\)
Vậy....
\(E=\dfrac{\dfrac{5}{2}\left(2x^2+3\right)+\dfrac{15}{2}}{2x^2+3}=\dfrac{5}{2}+\dfrac{15}{2\left(2x^2+3\right)}\)
Do \(2x^2+3\ge3;\forall x\Rightarrow\dfrac{15}{2\left(2x^2+3\right)}\le\dfrac{15}{2.3}=\dfrac{5}{2}\)
\(\Rightarrow E\le\dfrac{5}{2}+\dfrac{5}{2}=5\)
\(E_{max}=5\) khi \(x=0\)
Ta có:
\(-x^2+x\)
= \(-x^2+x-\dfrac{1}{4}+\dfrac{1}{4}\)
= \(-(x^2-x+\dfrac{1}{4})+\dfrac{1}{4}\)
= \(-(x-\dfrac{1}{2})^2+\dfrac{1}{4}\)
Ta thấy:
\(-(x-\dfrac{1}{2})^2\le0\)
=> \(-(x-\dfrac{1}{2})^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
Dấu bằng xảy ra \(\Leftrightarrow\) \(x-\dfrac{1}{2}=0\)
\(\Leftrightarrow\) \(x=\dfrac{1}{2}\)
Vậy MAX -x2 + x bằng \(\dfrac{1}{4}\) tại \(x=\dfrac{1}{2}\)
1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath
2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
3/
a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0
=> 13-x = 1 => x = 12
Khi đó \(A=\frac{17}{13-12}=17\)
Vậy Amax = 17 khi x = 12
b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)
Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0
=>11-x=1 => x=10
Khi đó \(B=\frac{10}{11-10}=10\)
Vậy Bmax = 10 khi x=10
\(P=\dfrac{\sqrt{x-2}}{x}\)ĐK:\(x\ne0\)
\(P^2=\dfrac{x-2}{x^2}\)
\(\Rightarrow P^2x^2-x+2=0\)
Để pt có ng0 thì:
\(1^2-8P^2\ge0\)
\(\Leftrightarrow P\le\dfrac{1}{2\sqrt{2}}\)
Vậy P max =\(\dfrac{1}{2\sqrt{2}}.\)