K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a=3+3^2+3^3+.....+3^{2017}+3^{2018}\)

\(3a=3+3^2+3^3+......+3^{2019}\)

\(3a-a=\left(3+3^2+....+3^{2019}\right)-\left(3+3^2+....+3^{2018}\right)\)

\(a=3^{2019}\)

\(\Rightarrow3^{2019}=\left(3^3\right)^{673}\)

\(a=\left(....7\right)^{673}\)

\(\Rightarrow\)tận cùng là 7

AH
Akai Haruma
Giáo viên
12 tháng 1 2023

Lời giải:

$M=3^{2017}-3^{2016}+3^{2015}-....+3-1$

$3M=3^{2018}-3^{2017}+3^{2016}-...+3^2-3$

$M+3M=3^{2018}-1$
$4M=3^{2018}-1$

$16M=4(3^{2018}-1)$

Ta thấy: $3^4=81\equiv 1\pmod {10}$

$\Rightarrow 3^{2018}=(3^4)^{504}.3^2\equiv 1^{504}.3^2\equiv 9\pmod {10}$

$\Rightarrow 16M=4(3^{2018}-1)\equiv 4(9-1)\equiv 32\equiv 2\pmod {10}$

Vậy $16M$ tận cùng là $2$

1 tháng 1 2019

Toán lớp 6 nhá!

Ta có:

1! có tận cùng là 1

tương tự: 2!=2

3!=6

4!=24

Từ 5! trở lên có tận cùng là:0

=> CSTC của 1!+2!+........+2016!+2017! là:

1+2+6+4+(....0)+(...0)+....+(....0)+(....0)=(....3)
Vậy: 1!+2!+.....+2017! có CSTC là: 3

 

17 tháng 9 2016

1!+2!+3!+4!=33

5!=120;6!=720;7! 2 chữ số tận cùng là 40;8! hai chũ số tận cùng là 20

9! hai chữ số tận cùng là 80.bắt đầu từ 10! trở đi 2 chữ số tận cùng là 00.do đó các chữ số tận cùng của biểu thức A là 33+20+20+40+20+80=213.vậy 2 chữ số tận cùng biểu thức A là 13

8 tháng 4 2017

hai chữ số tận cùng là 13 là đúng

27 tháng 10 2016

1)1

2)3

27 tháng 10 2016

du 2 va 3

18 tháng 2 2018

\(A=\left(1+2+3+...+2016+2017\right)^2\)

\(\Rightarrow A=\left\{\frac{\left(2017+1\right)\left[\left(2017-1\right):1+1\right]}{2}\right\}^2\)

\(\Rightarrow A=\left(\frac{2018.2017}{2}\right)^2=2035153^2\)

=>A = (............59). Vậy 2 chữ số tận cùng của A là 59