1.tìm x để A nhập giá trị A=x/12
2-x^30+x^28+x^26+.....+x^4+x^2+1/b^28+x^24+x^20+....+x^1+x^4+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^{30}+x^{28}+x^{26}+x^{24}+...+x^4+x^2+1}{x^{28}+x^{24}+x^{20}+...+x^8+x^4+1}=\frac{\left(x^{30}+x^{26}+x^{22}+...+x^2\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+x^{20}+...+x^4+1}\)
\(=\frac{x^2\left(x^{28}+x^{24}+...+x^4+1\right)+\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)
\(=\frac{\left(x^2+1\right)\left(x^{28}+x^{24}+...+x^4+1\right)}{x^{28}+x^{24}+...+x^4+1}\)
\(=x^2+1\)
Xét \(x\ne1\)
Đặt \(y=x^4\).\(M=x^{28}+x^{24}+...+x^4+1\)
\(M=y^7+y^6+...+y^2+y+1\)\(\Rightarrow Ay=y^8+y^7+...+y^2+y\)
\(\Rightarrow M\left(y-1\right)=y^8-1\Rightarrow M=\frac{y^8-1}{y-1}=\frac{x^{32}-1}{x^4-1}\)
Tương tự \(N=x^{30}+x^{28}+...+x^2+1=\frac{\left(x^2\right)^{16}-1}{x-1}=\frac{x^{32}-1}{x-1}\)
\(A=\frac{M}{N}=\frac{\frac{x^{32}-1}{x^4-1}}{\frac{x^{32}-1}{x^2-1}}=\frac{x^2-1}{x^4-1}=\frac{1}{x^2+1}\)
Thay số vô tính ra A.
\(B=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^{30}+x^{28}+x^{26}+...+x^2+1}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^{30}+x^{26}+x^{22}+...+x^6+x^2\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^2\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)
a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)
\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)
\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)
\(=\dfrac{8}{\sqrt{x}-3}\)
b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)
\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)
Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)
\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)