Phân tích đa thức thành nhân tử:
\(a,x^2-2xy+y^2-z^2\)
\(b,3x^2+6xy+3y^2-3z^2\)
\(c,3x^2-3xy-5x+5y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(xz+yz-5\left(x+y\right)\)
\(=z\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(z-5\right)\)
b.\(3x^2-3xy-5x+5y\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
c.\(x^2+6x-y^2-3z^2\)???Sai đề bài ...?
d.\(3x^2+6xy+3y^2-3z^2\)
\(=3\left(x^2+2xy+y^2-z^2\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)'
\(=3\left(x+y-z\right)\left(x+y+z\right)\)
Trả lời:
a, xz + yz - 5 ( x + y )
= ( xz + yz ) - 5 ( x + y )
= z ( x + y ) - 5 ( x + y )
= ( x + y ) ( z - 5 )
b, 3x2 - 3xy - 5x + 5y
= ( 3x2 - 3xy ) - ( 5x - 5y )
= 3x ( x - y ) - 5 ( x - y )
= ( x - y ) ( 3x - 5 )
c, x2 + 6x - y2 - 3z2
= - ( 3x2 - x2 + y2 - 6x )
d, 3x2 + 6xy + 3y2 - 3z2
= 3 ( x2 + 2xy + y2 - x2 )
= 3 [ ( x2 + 2xy + y2 ) - z2 ]
= 3 [ ( x + y )2 - z2 ]
= 3 ( x + y - z ) ( x + y + z )
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
a) \(3x^2-6x+9x^2\)
\(=12x^2-6x\)
\(=6x\left(2x-1\right)\)
b) hỏi chấm đề ?
c) \(3x^2+5y-3xy-5x\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
d) \(3y^2-3z^2+3x^2-6xy\)
\(=3\left(y^2-z^2+x^2-2xy\right)\)
\(=3\left[\left(x-y\right)^2-z^2\right]\)
\(=3\left(x-y-z\right)\left(x-y+z\right)\)
e) \(16x^3+54y^3\)
\(=2\left(8x^3+27y^3\right)\)
\(=2\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
f) \(x^2-25-2xy+y^2\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
g) \(x^5-3x^4-3x^3-x^2\)
\(=x^2\left(x^3-3x^2-3x-1\right)\)
\(10x\left(x-y\right)-6y\left(y-x\right)\)
\(=10x\left(x-y\right)+6x\left(x-y\right)\)
\(=\left(10x+6x\right)\left(x-y\right)\)
\(c,3x^2+5y-3xy-5x\)
\(=\left(3x^2-3xy\right)+\left(5y-5x\right)\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(3x-5\right)\left(x-y\right)\)
\(e,27+27x+9x^2=3\left(9+9x+x^2\right)\)
a) Ta có: \(3x^2+5y-3xy-5x\)
\(=3x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5\right)\)
b) Ta có: \(3y^2-3z^2+3x^2+6xy\)
\(=3\left(y^2-z^2+x^2+2xy\right)\)
\(=3\left[\left(x+y\right)^2-z^2\right]\)
\(=3\left(x+y-z\right)\left(x+y+z\right)\)
c) Ta có: \(x^2-25-2xy+y^2\)
\(=\left(x-y\right)^2-5^2\)
\(=\left(x-y-5\right)\left(x-y+5\right)\)
d) Ta có: \(5x^2-10xy+5y^2-20z^2\)
\(=5\left(x^2-2xy+y^2-4z^2\right)\)
\(=5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
e) Ta có: \(x^2-5x+5y-y^2\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-5\right)\)
f) Ta có: \(3x^2-6xy+3y^2-12z^2\)
\(=3\left(x^2-2xy+y^2-4z^2\right)\)
\(=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
\(3x^2+6xy+3y^2-3z^2=3\left(x^2+2xy+y^2-z^2\right)=3.\left[\left(x+y\right)^2-z^2\right]=3.\left(x+y-z\right)\left(x+y+z\right)\)
\(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)