Cho f(x)= ax2+bx+c. xác định b biết f(x):(x-1); f(x):(x+1) có cùng số dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F\left(x\right)-F\left(x-1\right)=x\)
\(\Leftrightarrow ax^2+bx-a\left(x-1\right)^2-b\left(x-1\right)=x\)
\(\Leftrightarrow2ax-a+b=x\)
Đồng nhất hệ số 2 vế:
\(\Rightarrow\left\{{}\begin{matrix}2a=1\\-a+b=0\end{matrix}\right.\) \(\Rightarrow a=b=\dfrac{1}{2}\)
a) \(a:b:c=\left(-1\right):3:\left(-4\right)\Rightarrow-a=\dfrac{b}{3}=-\dfrac{c}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=4a\end{matrix}\right.\)
\(\dfrac{1}{2}f\left(2\right)=-2\)
\(\Rightarrow\dfrac{1}{2}.\left(4a+2b+c\right)=-2\)
\(\Rightarrow2a+b+\dfrac{c}{2}=-2\)
\(\Rightarrow2a-3a+\dfrac{4a}{2}=-2\)
\(\Rightarrow a=-2\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a=-3.\left(-2\right)=6\\c=4a=4.\left(-2\right)=-8\end{matrix}\right.\).
b) \(f\left(x\right)=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow-2x^2+6x-8=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow h\left(x\right)=-13x^2-10\)
\(\Rightarrow h\left(x\right)=-\left(13x^2+10\right)\le-\left(13+10\right)=-23\)
\(h\left(x\right)=-23\Leftrightarrow x=0\)
-Vậy \(h\left(x\right)_{max}=-23\)
Mình giải giúp bạn nha
Giải :
Ta có : \(\int\left(x\right)=ãx^2+bx+c\)
\(\Rightarrow\int\left(-2\right)=4a-2b+c\) = 2a - 2b +2a + c = 2a -2b +3c +6 = 0
\(\Rightarrow2a-2b+3c=-6\) (1)
\(\int\left(2\right)=4a+2b+c\) = 2a + 2b + 2a + c = 2a + 2b +3c +6 =0
\(\Rightarrow2a+2b+3c=-6\) (2)
Từ (1) và (2) \(\Rightarrow2a-2b+3c=2a+2b+3c\)
\(\Rightarrow2a-2b+3c-\left(2a+2b+3c\right)=0\)
\(\Rightarrow-4b=0\)
\(\Rightarrow b=0\)
\(\Rightarrow2a+3c=-6\)
\(\Rightarrow5c+6=-6\)
\(\Rightarrow5c=-12\)
\(\Rightarrow c=\dfrac{-12}{5}\)
\(\Rightarrow a=\dfrac{-12}{5}+3\)
\(\Rightarrow a=\dfrac{3}{5}\)
Vậy \(b=0;c=\dfrac{-12}{5};a=\dfrac{3}{5}\)
\(f\left(4\right)=a.4^2+b.4+c=16a+4b+c\)
\(f\left(4\right)=a.\left(-4\right)^2+b.\left(-4\right)+c=16a-4b+c\)
\(f\left(4\right)=f\left(-4\right)\Rightarrow16a+4b+c=16a-4b+c\\ \Rightarrow16a+4b+c-16a+4b-c=0\\ \Rightarrow8b=0\\ \Rightarrow b=0\)
Ta có: \(f\left(x\right)=ax^2+bx+c=ax^2+0x+c=ax^2+c\) (1)
\(f\left(-x\right)=a\left(-x\right)^2+b\left(-x\right)+c=ax^2+0\left(-x\right)+c=ax^2+c\) (2)
Từ (1), (2)\(\Rightarrow f\left(x\right)=f\left(-x\right)\)
`f(x) = (x-1)(x+2) = 0`.
`=>` \(\left[ \begin{array}{l}x=1\\x=-2\end{array} \right.\)
Với `x = 1 => g(x) = 1 + a + b + 2 = 0`.
`<=> a + b = -3`.
Với `x = -2 => g(x) = -8 + 4a - 2b + 2 = 0`.
`<=> 4a - 2b = 6`.
`<=> 2a - b = 6`.
`=> ( a + b) + (2a - b) = -3 + 6`.
`=> 3a = 3`.
`=> a = 1.`
`=> b = -4`.
Vậy `(a,b) = {(1, -4)}`.
f(x)=ax^2+bx+c
=> f(1)= a + b + c
Mà f(1)= 3 nên a + b + c = 3 /1/
f(3) = 9a + 3b + c
Mà f(3)=5 => 9a + 3b + c = 5 /2/
f(5)= 25a + 5b + c
Mà f(5)=7 nên 25a + 5b + c = 7 /3/
Lấy /2/ - /1/, ta được:
8a + 2b = 2
<=> 2(4a + b) = 2
<=> 4a + b = 1 /4/
Lấy /3/ - /1/, ta được:
24a + 4 b = 4
<=> 4(6a + b) = 4
<=> 6a + b = 1 /5/
Lấy /5/ - /4/, ta được:
2a = 0
<=> a = 0
Thay a = 0 vào /4/, ta được:
4.0 + b = 1
<=> b = 1
Thay a = 0, b = 1 vào /1/, ta được:
0 + 1 + c = 3
<=> c = 2
=> a = 0, b = 1, c = 2
Vậy f(x) = 0.x^2 + x.1 + 2 = x + 2