K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(\frac{45^{10}.5^{20}}{75^5}\)

\(=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^5}\)

\(=\frac{3^{20}.5^{10}.5^{20}}{5^{10}.3^5}\)

\(=3^{15}.5^{20}\)

9 tháng 12 2018

\(\frac{45^{10}.5^{20}}{75^5}=\frac{9^{10}.5^{10}.5^{20}}{25^5.3^5}=\frac{3^{20}.5^{10}.5^{20}}{5^{10}.3^5}=\frac{3^{20}.5^{30}}{5^{10}.3^5}=3^{15}.5^{20}\)

20 tháng 9 2016

\(\frac{45^{10}\times5^{20}}{75^{15}}=\frac{3^{20}\times5^{10}\times5^{20}}{3^{15}\times5^{30}}=3^5=243\)

17 tháng 11 2016

\(\frac{45^{10}\times5^{20}}{75^{15}}=243\)

mk ko nhớ cách giải, chỉ có kết quả, nếu đúng k cho mk nha

17 tháng 11 2016

\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\frac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^7=243\)

2 tháng 10 2020

\(\frac{45^{10}.5^{20}}{75^{15}}\)

\(=\frac{\left(15.3\right)^{10}.5^{20}}{\left(15.5\right)^{15}}\)

\(=\frac{15^{10}.3^{10}.5^{20}}{15^{15}.5^{15}}\)

\(=\frac{3^{10}.5^5}{15^5}=\frac{3^{10}.5^5}{3^5.5^5}=3^5=243\)

2 tháng 10 2020

\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(9.5\right)^{10}.5^{20}}{\left(3.5.5\right)^{15}}=\frac{9^{10}.5^{10}.5^{20}}{3^{15}.5^{15}.5^{15}}=\frac{9^{10}.5^{30}}{3^{15}.5^{30}}=\frac{9^{10}}{3^{15}}=243\)

14 tháng 3 2022

1.A
2.A
3.B
4.C
5.B
6.C
7.A
8.A
9.B
10.A
11.B
12.A
13.C
14.B
15.B
16.A
17.A
18.A
19.A
20.C

3 tháng 3 2020

-5+10-15+20-25+30

=(-5+10)-(15-20)-(25-30)

=5-(-5)-(-5)

=5+5+5

=5.3

=15

3 tháng 3 2020

-5 + 10 - 15 + 20 - 25 + 30

= ( 10 + 20 + 30) - ( 5 + 15 + 25)

= 60 - 45

= 15

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Bài 1:
a)

\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{(2^3)^{20}+(2^2)^{20}}{(2^2)^{25}+(2^6)^{5}}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}(2^{20}+1)}{2^{30}(2^{20}+1)}=2^{10}\)

b)

\(\frac{45^{10}.5^{20}}{75^{15}}=\frac{(3^2.5)^{10}.5^{20}}{(3.5^2)^{15}}=\frac{3^{20}5^{30}}{3^{15}.5^{30}}=\frac{3^{20}}{3^{15}}=3^5\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2019

Bài 2:

Ta thấy $(x-2)^{2012}=[(x-2)^{1006}]^2\geq 0$ với mọi $x\in\mathbb{R}$

$|b^2-9|^{2014|\geq 0$ với mọi $b\in\mathbb{R}$ (tính chất trị tuyệt đối)

Do đó để tổng của chúng bằng $0$ thì:

\((x-2)^{2012}=|b^2-9|^{2014}=0\)

\(\Leftrightarrow \left\{\begin{matrix} x-2=0\\ b^2-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=2\\ b=\pm 3\end{matrix}\right.\)

Vậy.......