Câu 1, Chứng minh rằng:
a, \(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{2011+11}{2011+2000}\)
b, Nếu m,n là các số tụ nhiên thỏa mãn: \(4m^2+m=5n^2+n\) thì \(m-n\)và \(5m+5n+1\)đều là số cính phương.
Câu 2: a, Tính giá trị biểu thức
A=\(\left|x^2+y^2+5+2x-4y\right|-\left|-\left(x+y-1\right)^2\right|+2xy\)với \(x=2^{2011};y=16^{503}\)
b, Tìm x để B có giá trị nhỏ nhất \(B=\frac{x^2-2x+2011}{x^2}\)với x>0
\(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{\left(2011+11\right)\left(2011^2+11^2-11.2011\right)}{\left(2011+200\right)\left(2011^2+2000^2-2000.2011\right)}\)
Cần chứng minh \(2011^2+11^2-2011.11=2011^2+2000^2-2000.2011\)
Điều này không khó.
\(B=1-\frac{2}{x}+\frac{2011}{x^2}=2011t^2-2t+1\text{ (với }t=\frac{1}{x}\text{)}\)
->Gộp hằng đẳng thức....
\(A=\left|\left(x+1\right)^2+\left(y-2\right)^2\right|-\left(x+y-1\right)^2+2xy\)
\(=\left(x+1\right)^2+\left(y-2\right)^2-\left(x^2+y^2-2x-2y+2xy+1\right)+2xy\)
\(=4x-2y+4\)
thay số.Lưu ý: \(y=16^{503}=\left(2^4\right)^{503}=2^{2012}\)