chứng minh rằng 1 số có 2 chữ số trừ đi số viết bởi 2 chữ số của số đó nhưng theo thứ tự ngược lại thì chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là ab (có gạch trên đầu)
=>số đó viết theo thứ tự ngược lại là ba (có gạch trên đầu)
ta có hiệu hai số đó là:
ab - ba
= ( 10a + b) - (10b + a)
=10a + b - 10b - a
= 9a - 9b
= 9.(a-b) chia hết cho 9
=> đpcm
K mình nha
Bai 2
Khong mat tinh tong quat, gia su a lon hon hoac bang b
1ab1 - 1ba1 = 1000 + 100a + 10b +1 - 1000 - 100b - 10a -1
=90 (a-b) chia het cho 9
\(\overline{8ab8}-\overline{8ba8}\\ =8000+100a+10b+8-8000-100b-10a-8\\ =90a-90b=90\left(a-b\right)⋮90\)
dễ mà
1ab1 đảo ngược lại ta có số 1ba1
ta có : 1ab1 - 1ba1 =....0 ( vì hàng đơn vị của 2 số đều là 1 , 1-1=0 )
các số có tận cùng =0 thì chi hết cho 10
suy ra hiệu 1ab1 - 1ba1 chia hết cho 10
@@@( mk chỉ biết lý thuyết thôi , sai trình bày đừng ném đá )@@@