K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

a)Vì AM là đường trung tuyền nên ta có

AM=1/2BC

AM=(1/2).5 => AM=2,5(cm)

b)áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có

AB^2+AC^2=BC^2

thay số ta có : 3^2+AC^2=5^2=>9+AC^2=25=>AC^2=25-9=16

=>AC= căn bậc 2 của 16

=>AC=4(cm)

diện tích tam giác ABC là:

S=1/2a.h=1/2.3.4=6(cm2)

Hết nhé ^_^

ta có tam giác ABC vuông tại A 

Áp dụng tỉ số lượng giác trong .........................

=> AM2=BM.BC

=>AM=\(\sqrt{2,5\times5}\approx3,6cm\)

diện tích tam giác vuông ABC là 

                   STAM GIÁC ABC=\(\frac{1}{2}AM.BC=9cm^2\)

20 tháng 11 2021

\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)

15 tháng 4 2021

Dễ và cơ bản mà nhỉ:vv

a) Xét ∆ABM và ∆ACM:

AB=AC (∆ABC cân tại A)

BM=CM (AM là trung tuyến)

\(\widehat{ABM}=\widehat{ACM}\) (∆ABC cân tại A)

=> ∆ABM=∆ACM (c.g.c)

b) Theo câu a: ∆ABM=∆ACM 

=> \(\widehat{AMB}=\widehat{AMC}\)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (2 góc kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=90^o\)

=> AM vuông góc với BC

c) M là trung điểm của BC

=> \(MB=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\)

Áp dụng định lý Py-ta-go vào ∆ABM, ta có:

\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow5^2=AM^2+3^2\Rightarrow AM^2=5^2-3^2=16=4^2\)

\(\Rightarrow AM=4\) (cm)

Vậy AM=4cm.

b) Cm theo cách khác:

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của BC

hay AM\(\perp\)BC(đpcm)

19 tháng 12 2021

A)+ △ABC△ABC vuông ở A nên theo định lí Pytago ta có: 

AB2+AC2=BC2

AB2+AC2=BC2

Hay: 52+AC2=132

⟹AC=1252+AC2=132

⟹AC=12

+ E là trung điểm của AB nên :AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5

+ N là trung điểm của AC nên :AN=CN=AC2=122=6AN=CN=AC2=122=6


+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có:

 EC2=AE2+AC2=2,52+122=150,25

⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25

⟹EC≈12.3

+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: 

NB2=AB2+AN2=62+52=61

⟹BN≈7,8NB2=AB2+AN2=62+52=61

⟹BN≈7,8


+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên

AM=BC2=6,5AM=BC2=6,5

19 tháng 12 2021

Cảm ơn ạ 

10 tháng 4 2021

b) Ta có: Sabc là

( AB*AC ) / 2

mà AB = 5cm ( GT ) , AC = 12 cm ( câu a)

suy ra ( 5*12 ) / 2 = 30 ( cm2 )

Tương tự ta có Seac là 15 cm2

Sbeo = Sabc - Seac =30 - 15 = 15 cm2

Lại có Sboc = 2/3 Sbe

Suy ra Sboc = 2/3 * 15 = 10 (cm)

Vậy diện tích tam giác BOC là 10 cm

a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12

+ E là trung điểm của AB nên AE=EB=AB2=52=2,5

+ N là trung điểm của AC nên AN=CN=AC2=122=6

+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3

+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8

+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5

10 tháng 4 2021

giúp ikk

4 tháng 1 2018

a, Diện tích tam giác ABC là :

          S ABC^2 = (4+5+8)/2 . [(4+5+8)/2-4] . [(4+5+8)/2-5] . [(4+5+8)/2-6] 

                        = 8,5 . 4,5 . 3,5 . 0,5 = 669,375 ( công thức hê-rông rùi bình phương 2 vế lên )

=> S ABC = 25,87228247 (cm2)

Tk mk nha

\(HC=\dfrac{3^2}{4}=2.25\left(cm\right)\)

BC=HB+HC=6,25(cm)

AM=BC/2=3,125(cm)

\(AB=\sqrt{4\cdot6.25}=5\left(cm\right)\)

\(AC=\sqrt{6.25^2-5^2}=3.75\left(cm\right)\)

15 tháng 5 2022

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABH\) vuông tại \(H\) , ta có :

\(AB^2=AH^2+HB^2=3^2+4^2=25\Rightarrow AB=5\left(cm\right)\)

+ ) áp dụng hệ thức về cạnh và đường cao trong tam giác vuông \(ABC\) với \(AH\) là đường cao , ta có :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{AH^2}-\dfrac{1}{AB^2}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AC^2}=\dfrac{1}{3^2}-\dfrac{1}{5^2}=\dfrac{16}{225}\) 

\(\Rightarrow AC=\dfrac{15}{4}\left(cm\right)\)

+ ) áp dụng định lí Pytago trong tam giác vuông \(ABC\) vuông tại \(A\) , ta có :

\(BC^2=AB^2+AC^2=5^2+\left(\dfrac{15}{4}\right)^2=\dfrac{625}{16}\)

\(\Rightarrow BC=\dfrac{25}{4}\left(cm\right)\)

+ ) tam giác \(ABC\) vuông tại \(A\) có trung tuyến \(AM\) nên ta có :

\(AM=\dfrac{1}{2}BC=\dfrac{25}{8}\left(cm\right)\)

 

 

23 tháng 5 2021

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)