cho tam giác ABC có số đo tỷ lệ thuận với các số 4;3 và số đo các góc B,C tỷ lệ nghịch với 4,6. tìm số đo các góc của tam giác đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc dtsbn:
\(2\widehat{A}=3\widehat{B};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2};\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\\ \Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+4}=\dfrac{180^0}{9}=20^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=60^0\\\widehat{B}=40^0\\\widehat{C}=80^0\end{matrix}\right.\)
đề sai bạn ơi, các góc tỉ lệ chứ cạnh cđg
theo đề bài ta có :
A/3 = B/4 = C/5
=> A+B+C/3+4+5 = A/3=B/4=C/5
A+B+C = 180
=> 180/12 = A/3 = B/4 = C/5
=> 15 = A/3 = B/4 = C/5
=> A = 45 ; B = 60; C = 75
Gọi 3k, 4k, 5k lần lượt là các cạnh của tam giác ABC \(\left(k>0;k\inℝ\right)\)
Áp dụng định lí pythagore đảo vào tam giác ABC:
Vì \(\left(5k\right)^2=25k^2=9k^2+16k^2=\left(3k\right)^2+\left(4k\right)^2\)
Suy ra: tam giác ABC là tam giác vuông có độ dài cạnh huyền là 5k, độ dài 2 cạnh góc vuông là 3k, 4k
Với tam giác ABC vuông tại A, thì: \(\widehat{A}=90^0\)
Giả sử: AB = 3k ; AC = 4k
\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^0\)
Vì tổng các góc \(\widehat{A}=90^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)
\(\Rightarrow\widehat{C}=90^0-\widehat{B}=90^0-53^0=37^0\)
Vậy 3 góc trong tam giác có số đo là: \(90^0;37^0;53^0\)
HỌC TỐT!
ta có góc A : góc B : góc C=1:2:3
suy ra gócA/1=gócB/2=gócC/3=180/6=30 độ
=>góc A=30.1=30 độ
góc B=30.2=60 độ
góc C= 30.3=90 độ
Tổng các góc trong tam giác là 180 độ
Gọi số đo các góc lần lượt là x,y,z
Ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{1}=\frac{x+y+z}{3+2+1}=\frac{180}{6}=30\)
=> x=90; y=60; z=30
Tam giác ABC vuông tại A
D trung điểm AC; DM vuông góc BC => M trung điểm BC
=> AM trung tuyến thuộc cạnh huyền
=> Góc ABM = góc BAM = 60 độ
=> Tam giác ABM đều
Theo đề bài:
\(\left\{{}\begin{matrix}2\widehat{A}=3\widehat{B}\\\dfrac{\widehat{B}}{1}=\dfrac{\widehat{C}}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}\\\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}\end{matrix}\right.\Rightarrow\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+4}=\dfrac{180^o}{9}=20^o\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=20^o.3=60^o\\\widehat{B}=20^o.2=40^o\\\widehat{C}=20^o.4=80^o\end{matrix}\right.\)