giúp mình
bài 1
cho 5a+3b chia hết cho 7(a,b thuộc N). chứng minh 3a-b chia hết cho 7
bài 2
tìm 3 số nguyên
a+b=-4
b+c=-6
a+c=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 5a+3b chia hết cho 7
=>5a+3b+7a-7b chia hết cho 7
=>12a-4b chia hết cho 7
=>4(3a-b) chia hết cho 7
mà 4 và 7 nguyên tố cùng nhau
=>3a-b chia hết cho 7
mk làm phụ mấy câu thôi
a)2a-7 chia hết cho a-1
2a-2-5 chia hết cho a-1
2(a-1)-5 chia hết cho a-1
=>5 chia hết cho a-1 hay a-1EƯ(5)={1;-1;5;-5}
=>aE{2;0;6;-4}
b)3a+4 chia hết cho a-3
3a-9+13 chia hết cho a-3
3(a-3)+13 chia hết cho a-3
=>13 chia hết cho a-3 hay a-3EƯ(13)={1;-1;13;-13}
=>aE{4;2;16;-10}
3a-b=10a+6b-7a-7b
=2(5a+3b)-7(a+b)
5a+3b chia hết cho 7
7(a+b) chia hết cho 7
Do đo: 3a-b chia hết cho 7
a) Để n + 1 là ước của 2n + 7 thì :
2n + 7 ⋮ n + 1
2n + 2 + 5 ⋮ n + 1
2( n + 1 ) + 5 ⋮ n + 1
Vì 2( n +1 ) ⋮ n + 1
=> 5 ⋮ n + 1
=> n + 1 thuộc Ư(5) = { 1; 5; -1; -5 }
=> n thuộc { 0; 4; -2; -6 }
Vậy........
\(\text{n + 1 là ước của 2n + 7 nên }\left(2n+7\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\left[\text{vì }\left(2n+2\right)⋮\left(n+1\right)\right]\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\text{Trường hợp : }n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
\(\text{Trường hợp : }n+1=5\)
\(\Rightarrow n=5-1\)
\(\Rightarrow n=4\)
\(\text{Vậy }n\in\left\{0;4\right\}\)
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b
Bài 1
\(\left(5a+3b\right)⋮7\Rightarrow2\left(5a+3b\right)=10a+6b=\left(7a+7b\right)+\left(3a-b\right)⋮7\)
\(7a+7b⋮7\Rightarrow3a-b⋮7\)
Bài 2
a+b-a-c=-4-12 => b-c=-16
b+c+b-c=-6-16 => 2b=-22 => b=-11
Từ đó tính ra a;c