Cho abc chia hết cho 37 chứng minh bca chia hết cho 37(a,b,c thuộc N) giúp mình nhé!!!~~~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(abc) chia hết cho 37
=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
abc+cba +bca = 111(a+b+c) =37.3(a+b+c) chia hết cho 37
Nếu abc chia hết cho 37 => (cba+bca) chia hết cho 37 => cba chia hết cho 37 và bca chia hết cho 37
(abc) chia hết cho 37 => 100.a+10.b+c chia hết cho 37
=> 1000a+100b+10c chia hết cho 37
=>1000a-999a+100b+c chia hết cho 37
=> 100b+10c+a (bca) chia hết cho 37
\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\Leftrightarrow\)abc có gạch trên đầu
\(10\left(26a+10b+c\right)⋮37\Leftrightarrow260a+100b+10c⋮37\Leftrightarrow a+100b+10c⋮37\)
\(\Leftrightarrow\)bca \(⋮37\)(1)
\(abc⋮37\Leftrightarrow100a+10b+c⋮37\Leftrightarrow26a+10b+c⋮37\)abc có gạch trên đầu
\(\Leftrightarrow100\left(26a+10b+c\right)⋮37\Leftrightarrow2600a+1000b+100c⋮37\)
\(\Leftrightarrow10a+b+100c⋮37\Leftrightarrow\)cab \(⋮37\)(2)
Từ (1) và (2) =>abc \(⋮37\)thì bca và cab \(⋮37\)
bca=b x 100 + c x 10 + a x 1
bca = 100 + 10 + 1 = 111
xét số 111 chia cho 37
111 : 37 =3 (nhân )
=> bca : 37
ủng hộ mình nha bạn ơi
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
a) xyxyxy = xy . 10101 =xy . 7 .1443 => xyxyxy \(⋮\)7
b) xyyx = x.1000 + y.100 + y.10 + x = x.1001 + y.110
Vi` 1001\(⋮\) 11 => x.1001 \(⋮\)11
Vi` 110 \(⋮\)11 => y.110\(⋮\)11
=> x.1001 + y . 110\(⋮\)11 => xyyx \(⋮\)11
c) abc + bca + cab = a.100 + b.10 + c + b.100 + c.10 + a + c.100 + a.10 + b = a.111 + b.111 + c.111 = ( a + b + c ).111
Ma` 111\(⋮\)37 => ( a + b + c) \(⋮\)37 => abc + bca + cab \(⋮\)37
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.
=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.
abc chia hết cho 37
=>100a+10b+c chia hết cho 37
=>10(100a+10b+c) chia hết cho 37
=>1000a+100b+10c chia hết cho 37
=>999a+(100b+10c+a) chia hết cho 37
=>999a+bca chia hết cho 37
mà 999a chia hết cho 37
=>bca chia hết cho 37
Cảm ơn bạn nhe!~!~!~