cho a,b thỏa mãn (16a+ 17b). (17a+ 16b) chia hết cho 11.
CMR (16a+ 17b) (17a+ 16b) chia hết cho 121.
AI NHANH MK TICK CHO NHÉ! MK ĐANG CẦN GẤP.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : ( 16a + 17b ) ( 17a + 16b ) : 11 ( vì 11 là số nguyên tố )
= 16a + 17b : 11
17a + 16b : 11
=G/s 16a + 17b : 11(1)
Mà ( 16a + 17b ) + ( 17a + 16b ) = ( 33a + 33b ) = 11 ( 3a + 3b ) : 11
= 17a + 16b : 11(2)
Từ ( 1 ) , ( 2 ) = ( 16a + 17b ) ( 17a +16b ) : 121
Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\)
\(\Rightarrow\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
Giả sử \(16a+17b⋮11\)
\(\Rightarrow16a+17b+17a+16b=\left(16a+17a\right)+\left(17b+16b\right)=33a+33b=33\left(a+b\right)\)
Vì \(33⋮11\) nên \(33\left(a+b\right)⋮11\)
Mà \(16a+17b⋮11\)
\(\Rightarrow17a+16b⋮11\)
Lại có: 11 là số nguyên tố
\(\Rightarrow\left(16a+17b\right)\left(17a+16b\right)⋮11^2=121\)
Vậy \(\left(16a+17b\right)\left(17a+16b\right)⋮121\).
Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) Vì 11 là số nguyên tố
=> \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
Không mất tính tổng quát. G/S: \(16a+17b⋮11\). (1)
Chúng ta chứng minh: \(17a+16b⋮11\)
Vì \(16a+17b⋮11\)
=> \(2\left(16a+17b\right)⋮11\)
=> \(32a+34b⋮11\)
=> \(\left(33a+33b\right)-\left(a-b\right)⋮11\)
Vì \(33a+33b=11\left(3a+3b\right)⋮11\)
=> \(\left(a-b\right)⋮11\)
=> \(\left(33a+33b\right)+\left(a-b\right)⋮11\)
=> \(34a+32b⋮11\)
=> \(2\left(17a+16b\right)⋮11\) mà 2 không chia hết cho 11
=> \(17a+16b⋮11\) (2)
Từ (1) và (2) => \(\left(17a+16b\right)\left(16a+17b\right)⋮\left(11.11\right)\)
=> \(\left(17a+16b\right)\left(16a+17b\right)⋮121\)
Cách khác:
Có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) ( vì 11 là số nguyên tố)
=> \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)
G/s: \(16a+17b⋮11\)(1)
Mà \(\left(16a+17b\right)+\left(17a+16b\right)=\left(33a+33b\right)=11\left(3a+3b\right)⋮11\)
=> \(17a+16b⋮11\)(2)
Từ (1); (2) => \(\left(16a+17b\right)\left(17a+16b\right)⋮121\)
2. Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath