Tìm stn n , biết
2n +4 chia hết cho n -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
n + 4 chia hết cho n - 1
=> ( n - 1 ) + 5 chia hết cho n - 1
Mà n - 1 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n -1 thuộc Ư(5) = { 1 ; 5 }
=> n thuộc { 2 ; 6 }
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Cách 1 :
Ta có : 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n - 1
=> 3(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Cách 2 :
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\)
Để 3n + 4 chia hết cho n - 1 thì 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
a) Vì 5n + 7 chia hết cho n
\(\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\Rightarrow n\in\left\{\pm1;\pm7\right\}\)
Vậy \(n\in\left\{\pm1;\pm7\right\}\)
b) Vì n + 9 chia hết cho n +4
\(\Rightarrow\left(n+4\right)+5⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(\Rightarrow n+4\inƯ\left(5\right)\)
\(\Rightarrow n+4\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-1;-9\right\}\) \(\inℕ\)
Vậy \(n\in\left\{-3;-5;-1;-9\right\}\)
TA CÓ :
.........................................................................................
vậy 4 là B(n-1)
=> n = { 1 ; 2 ; 4 }
Vì n - 1 \(⋮\)n - 1
=> 2n-2 \(⋮\)n-1
Vì 2n + 4 \(⋮\)n-1
=>[( 2n + 1) + ( 2n-2) ] \(⋮\)n-1
=> [ 2n +1 +-2n-2] \(⋮\)n-1
=> 3 \(⋮\)n-1
=> n-1 \(\in\)Ư(3) = { 1:3}
=> n\(\in\){0;2}
Vậy ............