Tìm giá trị nhỏ nhất của biểu thức sau:
H=|x-3|+|4+x|
Làm hộ mình trong tối nay nha!!!!!♡♡♡♡☆☆☆
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)
Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :
\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)
\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)
Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha )
Phạm Thị Thùy Linh đây nhé
\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra khi \(x=\frac{25}{4}\)
Ta có:\(x+30\%\cdot x=-1,3\)
<=> \(x+0,3\cdot x=-1,3\)
<=> \(x\cdot\left(1+0,3\right)=-1,3\)
<=> \(x\cdot1,3=-1,3\)
<=> \(x=-1,3:1,3\)
<=> \(x=-1\)
Vậy: \(x=-1\)
a: \(=12x^2-9x-12x^2-10x+6x+5=-13x+5\)
b: \(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x^2-16x\)
\(=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)
\(=x^3-2x^2+3x\)
c: \(=x^3-3x^2+3x-1+x^3+8+3\left(x^2-16\right)\)
\(=2x^3-3x^2+3x+7+3x^2-48=2x^3+3x-41\)
d: \(=\left(x^3+1\right)\left(x^3-1\right)=x^6-1\)
2 (x-1)+3(x-2 )=x-4 \(\Rightarrow\) 2x-2+3x-6=x-4 \(\Rightarrow\) (2+3)x - x = -4+6+2 \(\Rightarrow\) 4x =4 \(\Rightarrow\) x=1
vậy x=1
vì ST1 = \(\frac{1}{3}\)ST3, ST2 = \(\frac{2}{5}\)ST3 nên ST1 = \(\frac{5}{15}\)ST3 , ST2 = \(\frac{6}{15}\)ST3
Tự vẽ sơ đồ
Theo sơ đồ, tổng số phần bằng nhau là : 15 + 6 + 5 = 26 (phần)
ST3 là : 260 : 26 * 15 = 150
ST2 là : 260 : 26 * 6 = 60
ST1 là : 260 - 60 - 150 = 50
a) Đặt \(A=x^2-2x+5\)
\(=\left(x-1\right)^2+4\)
Ta thấy \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0+4\forall x\)
hay \(A\ge4\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy Min A=4 \(\Leftrightarrow x=1\)
a , \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
Dấu " = " xảy ra khi x - 1 = 0 hay x = 1
Vậy GTNN là 4 khi x = 1 .
b , \(9-4x-x^2=-\left(x^2+4x-9\right)=-\left(x^2+4x+4-13\right)=-\left(x+2\right)^2+13=13-\left(x+2\right)^2\le13\)
Dấu " = " xảy ra khi x + 2 = 0 hay x = -2 .
Vậy GTLN là 13 khi x = -2 .
c , mik ko bt làm
\(H=\left|x-3\right|+\left|4+x\right|\)
\(H=\left|3-x\right|+\left|4+x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(H\ge\left|3-x+4+x\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi ( có 2 trường hợp )
TH1: \(\hept{\begin{cases}3-x>0\\4+x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}\Rightarrow}-3< x< 3\left(Chon\right)}\)
TH2: \(\hept{\begin{cases}3-x< 0\\4+x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x< -4\end{cases}\Rightarrow}3< x< -4\left(Loai\right)}\)
Vậy Hmin = 7 khi và chỉ khi -3 < x < 3
Ta có:
\(\hept{\begin{cases}\left|x-3\right|=\left|3-x\right|\ge3-x\\\left|4+x\right|\ge4+x\end{cases}\forall x}\)
\(H=\left|x-3\right|+\left|4+x\right|\)
\(\Rightarrow H=\left|3-x\right|+\left|4+x\right|\)
\(\Rightarrow H\ge3-x+4+x=7\)
\(H=7\Leftrightarrow\hept{\begin{cases}\left|3-x\right|=3-x\\\left|4+x\right|=4+x\end{cases}\Leftrightarrow}\hept{\begin{cases}3-x\ge0\\4+x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Leftrightarrow-4\le x\le3}\)
Vậy \(H_{min}=7\Leftrightarrow-4\le x\le3\)