K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 12 2018

Bạn ko phân biệt được "hoặc" và "và" trong toán học rồi

"Hoặc" là có thể cái này xảy ra, cái kia xảy ra đều được, nhưng "và" thì phải 2 thứ đồng thời xảy ra. Mà trên đời làm gì tồn tại số thực nào vừa lớn hơn 3 vừa nhỏ hơn 2 đâu bạn

Bạn có thể dễ dàng kiểm chứng kết quả bài toán bằng MODE-7 của casio mà :D

NV
3 tháng 12 2018

\(log_2x-log_2x.log_3x+log_3x-1>0\)

\(\Leftrightarrow log_2x\left(1-log_3x\right)-\left(1-log_3x\right)>0\)

\(\Leftrightarrow\left(log_2x-1\right)\left(1-log_3x\right)>0\)

\(\Rightarrow2< x< 3\)

NV
13 tháng 2 2020

\(log_3x-log_5x.log_2x=0\)

\(\Leftrightarrow\frac{log_2x}{log_23}-\frac{log_2x}{log_25}.log_2x=0\)

\(\Leftrightarrow log_2x\left(\frac{1}{log_23}-\frac{log_2x}{log_25}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}log_2x=0\\\frac{1}{log_23}=\frac{log_2x}{log_25}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}log_2x=0\\log_2x=\frac{log_25}{log_23}=log_35\end{matrix}\right.\)

\(\Rightarrow T=log_2\left(x_1x_2\right)=log_2x_1+log_2x_2=0+log_35=log_35\)

28 tháng 3 2016

d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :

\(\log_2x+\log_3x+\log_4x=\log_{20}x\)

\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)

\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)

\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)

Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)

Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)

Vậy nghiệm duy nhất của phương trình là \(x=1\)

28 tháng 3 2016

c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :

\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)

\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)

\(\Leftrightarrow\log_5x=1\)

\(\Leftrightarrow x=5^1=5\) thỏa mãn

Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)

26 tháng 3 2016

a) Sử dụng công thức \(\frac{1}{\log_ba}=\log_ab\), hơn nữa \(x=2007!\) nên ta có :              \(A=\log_x2+\log_x3+..........\log_x2007\)

    \(=\log_x\left(2.3...2007\right)\)

    \(=\log_xx=1\)

b) Nhận thấy 

\(lg\tan1^o+lg\tan89^o=lg\left(lg\tan1^o.lg\tan89^o\right)=lg1=0\)

Tương tự ta có :

 \(lg\tan2^o+lg\tan88^o=0\)

.................

\(lg\tan44^o+lg\tan46^o=0\)

\(lg\tan45^o=lg1=0\)

Do đó :

\(B=\left(lg\tan1^o+lg\tan89^o\right)+\left(lg\tan2^o+lg\tan88^o\right)+......+lg\tan45^0=0\)

30 tháng 3 2016

Với điều kiện x>0. lấy Logarit cơ số 2 hai vế ta có :

\(\log_2x.\log_2x<5\Leftrightarrow-\sqrt{5}<\log_2x<\sqrt{5}\)

Từ đó suy ra, nghiệm của bất phương trình là :

\(2^{-\sqrt{5}}\)<x<\(2^{\sqrt{5}}\)

9 tháng 12 2016

sao bạn k bấm máy tính. thi trắc nghiệm mà.

9 tháng 12 2016

trường mình thi học kì 50% tự luận nữa :p

29 tháng 3 2016

Điều kiện x>0. Đặt \(u=\log_3x\) thì \(x=3^u\). Khi đó phương trình trở thành 

\(4^u+2^u=2.3^u\Leftrightarrow4^u-3^u=3^u-2^u\)

Giả sử phương trình ẩn u này có nghiệm \(\alpha\), tức là

\(4^{\alpha}-3^{\alpha}=3^{\alpha}-2^{\alpha}\)

Xét hàm số \(f\left(t\right)=\left(t+1\right)^{\alpha},t>0\)

Ta có :

\(f'\left(t\right)=\alpha\left[\left(t+1\right)^{\alpha-1}-1^{\alpha-1}\right]\)

Khi đó f(3)=f(2), f(t) khả vi liên tục trên (2,3). Theo định lia Lagrange, tồn tại \(c\in\left[2;3\right]\) sao cho \(f'\left(c\right)=0\)

\(\Leftrightarrow\alpha\left[\left(c+1\right)^{\alpha-1}-c^{\alpha-1}\right]=0\Leftrightarrow\begin{cases}\alpha=0\\\alpha=1\end{cases}\)

Thử lại thấy \(u=\alpha=0\) và \(u=\alpha=1\) đều thỏa mãn.

Vậy x=1, x=3