K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

Ta có : \(\frac{x}{a}\)​​+\(\frac{y}{b}\)+\(\frac{z}{c}\)=0   => \(\frac{abz+acy+bcx}{xyz}\)=0=> abz+acy+bcz= 0

Lại có \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\Rightarrow\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}-2\left(\frac{abz+acy+bcx}{xyz}\right)=4\)

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}\)=4

17 tháng 2 2017

bạn ghi đề thiếu rồi nhé :

(1+1/3)(1+1/8)(1+1/15)....(1+1/9603)=4/3.9/8.16/5....9604/9603=(22/1.3 )(32/2.4)(42/3.5)...(982/97.99)=(2.3.4.....98)/(1.2...97)= 

DD
23 tháng 1 2022

\(M=1+\frac{1}{5}+\frac{3}{35}+...+\frac{3}{9603}+\frac{3}{9999}\)

\(=\frac{3}{1\times3}+\frac{3}{3\times5}+\frac{3}{5\times7}+...+\frac{3}{97\times99}+\frac{3}{99\times101}\)

\(=\frac{3}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}+\frac{2}{99\times101}\right)\)

\(=\frac{3}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{3}{2}\times\left(1-\frac{1}{101}\right)=\frac{150}{101}\)

\(M=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{9603}+\dfrac{2}{9999}\right)\)

\(=\dfrac{6}{5}+\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

\(=\dfrac{6}{5}+\dfrac{3}{2}\cdot\dfrac{96}{505}=\dfrac{150}{101}\)

1) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)

\(\Leftrightarrow4x=4\)

hay x=1(loại)

Vậy: \(S=\varnothing\)

2) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+2}{x-2}+\dfrac{x}{x+2}=2\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+4x+4+x^2-2x=2x^2-8\)

\(\Leftrightarrow2x^2+2x+4-2x^2-8=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

2 tháng 3 2021

Bài dài quá, lần sau chia nhỏ câu hỏi nhé!!!!!

12 tháng 9 2021

đúng vậy

28 tháng 4 2018

a) \(\left(3x-1\right).\left(\frac{-1}{2}x+5\right)=0\)

\(\Rightarrow3x-1=0\Rightarrow3x=1\Rightarrow x=\frac{1}{3}\)

\(\frac{-1}{2}x+5=0\Rightarrow\frac{-1}{2}x=-5\Rightarrow x=10\)

b) \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)

\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)

\(\Rightarrow3x-5x-x=\frac{1}{5}+\frac{3}{2}+3\)

\(-3x=\frac{47}{10}\)

\(x=\frac{-47}{30}\)

c) \(-5.\left(x+\frac{1}{5}\right)-\frac{1}{2}\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)

\(-5x-1-\frac{1}{2}x+\frac{1}{3}=\frac{3}{2}x-\frac{5}{6}\)

\(-5x-\frac{1}{2}x-\frac{3}{2}x=\frac{-5}{6}+1-\frac{1}{3}\)

\(-7x=\frac{-1}{6}\)

\(x=\frac{1}{42}\)

d) \(3.\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(3.\left(3x-\frac{1}{2}\right)^3=\frac{-1}{9}\)

\(\left(3x-\frac{1}{2}\right)^3=\frac{-1}{27}\)

\(\left(3x-\frac{1}{2}\right)^3=\left(\frac{-1}{3}\right)^3\)

\(\Rightarrow3x-\frac{1}{2}=\frac{-1}{3}\)

\(3x=\frac{1}{6}\)

\(x=\frac{1}{18}\)

Học tốt nhé bn!
 

11 tháng 8 2021

x = \(\frac{1}{18}\)nha