Cho đường thẳng d có pt: y = kx+ 3
a) Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định khi k thay đổi.
b) Tìm giá trị của k để khoảng cách từ gốc tọa độ O tới đường thẳng d bằng 2.
c) Tìm giá trị của k để khoảng cách từ gốc tọa độ O tới đường thẳng d lớn nhất.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NL
5 tháng 12 2016
y = kx +3 <=>kx+3-y=0 => x=0,y=3
đường thẳng d luôn đi qua một điểm cố định(0;3)
b)khoảgn cách từ gốc toạ độ O tới đường thẳng d bằng căn 2 của x^2+y^2
=>x^2+y^2=4 (1)
Thế y = kx +3, \(x^2+\left(kx+3\right)^2=4\)
\(x^2\left(1+k^2\right)+6kx+5=0\)có nghiệm khi k>=\(\frac{\sqrt{5}}{3}\)
c)
a: Tọa độ điểm mà (D) luôn đi qua là:
x=0 và y=k*0+3=3
b: y=kx+3
=>kx-y+3=0
\(d\left(O;d\right)=\dfrac{\left|k\cdot0+\left(-1\right)\cdot0+3\right|}{\sqrt{k^2+1}}=\dfrac{3}{\sqrt{k^2+1}}\)
Để d=2 thì \(\sqrt{k^2+1}=\dfrac{3}{\sqrt{2}}\)
=>k^2+1=9/2
=>k^2=7/2
hay \(k=\pm\dfrac{\sqrt{14}}{2}\)
c: Để d lớn nhất thì \(\sqrt{k^2+1}_{MIN}\)
=>k=0