ai giúp mình câu này với
cho tam giác ABC, M nằm trong tam giác ABC. AM,BM,CM cắt BC,AC,AB tại A',B',C' . Nếu \(S_{AMB'}+S_{CMA'}+S_{BMC'}=\dfrac{1}{2}S_{ABC}\)thì trong Â',BB',CC' có ít nhất 1 cái là đường trung tuyến
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(S_{AMB}=a;S_{BMC}=b;S_{CMA}=c\)
Ta có \(\frac{AM}{MA'}+\frac{BM}{MB'}+\frac{MC}{MC'}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)=\(\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge6\)(cô-si)
a: Xét ΔABC có BM là phân giác
nên AM/AB=CM/BC
=>AM/15=CM/10
=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3
=>AM=9cm; CM=6cm
b: BM vuông góc BN
=>BN là phân giác góc ngoài tại B
=>NC/NA=BC/BA
=>NC/(NC+15)=10/15=2/3
=>3NC=2NC+30
=>NC=30cm
Xét tam giác AID và tam giác BIM có :
AD = BM (gt)
AI = BI (GT)
\(\widehat{A}=\widehat{B}\) (Ax song song với BM; ở vị trí so le trong)
Do đó : tam giác AID = tam giác BIM (c-g-c)
B)
Xét 2 tam giác AIM và BID có :
AI = BI (gt)
DI = IM ( tam giác AID = tam giác BIM)
\(\widehat{BID}=\widehat{AIM}\)(Đ đ)
Do đó : \(\Delta AIM=\Delta BID\left(c-g-c\right)\)
c)