K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

a) xét ΔAOI,ΔBOIΔAOI,ΔBOI có :

OA = OB ( GT )

OI cạnh chung

AOIˆAOI^ = BOIˆBOI^ ( vì Oz phân giác xOyˆxOy^ )

⇒ΔAOI=ΔBOI(c.g.c)⇒ΔAOI=ΔBOI(c.g.c)

b )

gọi H là giao điểm AB , OI

xét ΔOAH,ΔOBHΔOAH,ΔOBH có

OH chung

AOHˆAOH^ = BOHˆBOH^ ( OI phân giác xOyˆxOy^ )

OA = OB ( GT )

⇒ΔOAH=ΔBOH(c.g.c)⇒ΔOAH=ΔBOH(c.g.c)

ta có : AHOˆAHO^ = BHOˆBHO^ ( 2 góc tương ứng )

mà AOHˆAOH^ + BHOˆBHO^ = 180o ( 2 góc kề bù )

⇒AOHˆ⇒AOH^ = BHOˆBHO^ = 180O2180O2 = 90o

⇒AB⊥OI⇒AB⊥OI tại H

      link mình nha   

21 tháng 4 2022

bn cần cả bài hay lm phần nào ạ

21 tháng 4 2022

cả bài ạ

 

a: Xét ΔOIA và ΔOIB có

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOIA=ΔOIB

b: Xét ΔONI vuông tại N và ΔOMI vuông tại M có

OI chung

\(\widehat{NOI}=\widehat{MOI}\)

Do đó: ΔONI=ΔOMI

Suy ra: IN=IM

DD
12 tháng 5 2022

a) Xét tam giác \(OIA\) và tam giác \(OIB\) có: 

\(OA=OB\)

\(\widehat{AOI}=\widehat{BOI}\)

\(OI\) cạnh chung

suy ra \(\Delta OIA=\Delta OIB\) (c.g.c) 

b) Xét tam giác \(OIN\) và tam giác \(OIM\):

\(\widehat{ION}=\widehat{IOM}\)

\(OI\) cạnh chung

\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)

suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)

\(\Rightarrow IN=IM\)

c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).

Xét tam giác \(INA\) và tam giác \(IMB\):

\(IA=IB\)

\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)

\(IN=IM\)

suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)

d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)

suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).

 

Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

Suy ra: MA=MB

Xét ΔOKM vuông tại K và ΔOHM vuông tại H có

OM chung

\(\widehat{KOM}=\widehat{HOM}\)

Do đó;ΔOKM=ΔOHM

Suy ra: OH=OK

=>AH=BK

Xét ΔMAH vuông tại H và ΔMBK vuông tại K có

MA=MB

AH=BK

Do đó: ΔMHA=ΔMKB

13 tháng 12 2016

Hình bạn tự vẽ nha

Xét \(\Delta AIO\)\(\Delta BIO\) có:

OI chung

\(\widehat{AOI} = \widehat{BOI}\) (Oz là tia phân giác của \(\widehat{xOy}\) (gt))

OA = OB (gt)

\(\Rightarrow\)\(\Delta AIO = \Delta BIO\) (cgc)

b) Vì \(\Delta AIO = \Delta BIO\) (cmt)

\(\Rightarrow IB=IA\) (2 cạnh tương ứng)

mà OA = OB (gt)

\(\Rightarrow OI\) là đường trung trực của AB

hay \(AB \perp OI\)