Chúng minh đẳng thức:
\(\dfrac{2}{x\left(x+1\right)}+\dfrac{2}{\left(x+1\right)\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{2}{\left(x+2014\right)\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left|x+2\right|+\left|-2x+1\right|\le x+1\left(1\right)\)
TH1: \(x\le-2\)
\(\Rightarrow x+1\le-1< \left|x+2\right|+\left|-2x+1\right|\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2-2x+1\le x+1\)
\(\Leftrightarrow x\ge1\)
\(\Rightarrow x\in\left[1;\dfrac{1}{2}\right]\)
TH3: \(x>\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow x+2+2x-1\le x+1\)
\(\Leftrightarrow x\le0\)
\(\Rightarrow\) vô nghiệm
Vậy \(x\in\left[1;\dfrac{1}{2}\right]\)
b, \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\left(2\right)\)
TH1: \(x\le-2\)
\(\left(2\right)\Leftrightarrow-x-2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>-\dfrac{3}{2}\)
\(\Rightarrow\) vô nghiệm
TH2: \(-2< x\le1\)
\(\left(2\right)\Leftrightarrow x+2+x-1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x< -\dfrac{5}{2}\)
\(\Rightarrow\) vô nghiệm
TH3: \(x>1\)
\(\left(2\right)\Leftrightarrow x+2-x+1< x-\dfrac{3}{2}\)
\(\Leftrightarrow x>\dfrac{9}{2}\)
\(\Rightarrow x\in\left(\dfrac{9}{2};+\infty\right)\)
Vậy \(x\in\left(\dfrac{9}{2};+\infty\right)\)
Câu a bạn sửa lại đề 11→1
\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)
\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
a: \(\dfrac{y}{\left(x-y\right)\left(y-z\right)}-\dfrac{z}{\left(y-z\right)\left(x-z\right)}-\dfrac{x}{\left(x-y\right)\left(x-z\right)}\)
\(=\dfrac{xy-yz-xz+yz-xy+xz}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
=0
c: \(=\dfrac{1}{x\left(x-y\right)\left(x-z\right)}-\dfrac{1}{y\left(y-z\right)\left(x-y\right)}+\dfrac{1}{z\left(x-z\right)\left(y-z\right)}\)
\(=\dfrac{zy\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{zy^2-z^2y-x^2z+xz^2+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)
\(=\dfrac{1}{xyz}\)
a/ ĐK: $x\ne -5$
$\dfrac{6x^2+30x}{4}=\dfrac{6x(x+5)}{4}=\dfrac{3x(x+5)}{2}$
Đề này sai
b/ ĐK: $x\ne \pm 1$
$\dfrac{(x+2)(x+1)}{x^2-1}\\=\dfrac{(x+2)(x+1)}{(x-1)(x+1)}\\=\dfrac{x+2}{x-1}$
$\to$ ĐPCM
\(VT=\dfrac{2}{x}-\dfrac{2}{x+1}+\dfrac{2}{x+1}-\dfrac{2}{x+2}+...+\dfrac{2}{x+2014}-\dfrac{2}{x+2015}\)
\(VT=\dfrac{2}{x}-\dfrac{2}{x+2015}=\dfrac{2\left(x+2015-x\right)}{x\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
vt la j z bn