Chứng tỏ rằng hai số 2n + 3 và 3n + 4 nguyên tố cùng nhau với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN( 2n+3;3n+4)
=> 2n+3 chia hết cho d và 3n+4 chia hết cho d
=> (2n+3) - (3n+4) chia hết cho d
=> 3(2n+3) - 2(3n+4) chia hết cho d
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(2n+3; 3n+4) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau
\(2n+3\)và \(3n+4\)
Gọi d là ước chung lớn nhất của \(2n+3\)và \(3n+4\)
Ta có :
\(2n+3⋮d=\left(2n+3\right)\cdot3⋮d=\left(6n+9\right)⋮d\)
\(3n+4⋮d=\left(3n+4\right)\cdot2⋮d=\left(6n+8\right)⋮d\)
\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow6n+9-6n-8⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\)Vậy \(2n+3\)và \(3n+4\)là hai số nguyên tố cùng nhau
Gọi ƯCLN ( 2n+3;3n+4 ) là d
\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}3.\left(2n+3\right)⋮d\\2.\left(3n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}}\)\(\Rightarrow\left(6n+9\right)-\left(6n+8\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\in\text{Ư}\left(1\right)=\pm1\)
\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
đpcm
Gọi d = (A=3n+5 ;B=2n+3) => A ; B chia hết cho d
=> 2A -3B = 2(3n+5) - 3(2n+3) = 6n +10 - 6n -9 =1 chia hết cho d
=> d =1
Vậy (A;B) =1
gọi UCLN(n+1;3n+4) là d
=>3n+4 chia hết cho d
=> n+1 chia hết cho d
=>3(n+1) chia hết cho d
=>3n+3 chia hết cho d
=>(3n+4)-(3n+3) chia hết cho d
=>1 chia hết cho d
=>d=1
=>UCLN(n+1;3n+4)=1
=>n+1 và 3n+4 nguyên tố cùng nhau
n+1 và 3n+4 là 2 số nguyên tố cùng nhau khi ƯCLN(n+1;3n+4)=1
Gọi ƯCLN(n+1;3n+4)=d
=> [(n+1)+(3n+4)] chia hết cho d
=> 1 chia hết cho d => d=1
=> ƯCLN(n+1;3n+4)=1
Vậy n+1 và 3n+4 là 2 số nguyên tố cùng nhau
Gọi d là ước chung cua n+1 và 3n+4
Ta có n+1 :d và 3n +4:d
Suy ra (3n+4)-(3n+3):d suy ra1:d suy ra d=1
Vậy n+`1 và 3n+4 la hai số nguyên tố cùng nhau
a) Gọi ƯCLN (n + 3; n + 2) = d.
Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d
Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.
b) Gọi ƯCLN (3n+4; 3n + 7) = đ.
Ta thấy (3n + 4) chia hết cho d;(3n+7) chia hết cho d =>[(3n+7) - (3n + 4)] chia hết cho d =>3 chia hết cho d nên
d = 1 hoặc d = 3.
Mà (3n + 4) không chia hết cho 3; (3n + 7) không chia hết cho 3 nên d = 1. Ta có điều phải chứng minh.
c) Gọi ƯCLN (2n + 3; 4n + 8) = d.
Ta thấy (2n + 3) chia hết cho d ; (4n + 8) chia hết cho d => [(4n + 8) - 2.(2n +3)] chia hết cho d => 2 chia hết cho d
nên d = 1 hoặc d = 2.
Mà (2n+3) không chia hết cho 2 nên d = 1. Ta có điều phải chứng minh.