Tìm GTLN của: D = -x2 + 8x - 4
E = -2x2 - 4x + 5
F = \(\frac{x^{2012}+2013}{x^{2012}+2011}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(P=\dfrac{2012}{x^2+4x+2013}\)
Ta thấy: \(x^2+4x+2013=x^2+4x+4+2009\)
\(=\left(x+2\right)^2+2009\ge2009\)
\(\Rightarrow\dfrac{1}{\left(x+2\right)^2+2009}\le\dfrac{1}{2009}\)
\(\Rightarrow P=\dfrac{2012}{\left(x+2\right)^2+2009}\le\dfrac{2012}{2009}\)
Xảy ra khi \(x=-2\)
\(A=\frac{2012}{x^2+4x+2013}=\frac{2012}{x^2+4x+4+2009}=\frac{2012}{\left(x+2\right)^2+2009}\)
ta thấy biểu thức A đạt giá trị lớn nhất khi mẫu phân số nhỏ nhất
(x+2)2+2009 nhỏ nhất là bằng 2009 vì (x+2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0
Vậy biểu thức A lớn nhất bằng 2012/2009 khi x+2 = 0 <=> x = -2
\(B=\frac{a^{2012}+2013}{a^{2012}+2011}=\frac{a^{2012}+2011+2}{a^{2012}+2011}=\frac{a^{2012}+2011}{a^{2012}+2011}+\frac{2}{a^{2012}+2011}=1+\frac{2}{a^{2012}+2011}\)
B lớn nhất khi \(\frac{2}{a^{2012}+2011}\) lớn nhất , <=> a2012+2011 nhỏ nhất, a2012+2011 nhỏ nhất = 2011 khi a = 0
Vậy B lớn nhất là: \(B=1+\frac{2}{2011}=\frac{2013}{2011}\) khi a = 0
\(D=-x^2+8x-4\)
\(D=-x^2+8x-16+12\)
\(D=-\left(x-4\right)^2+12\)
Có \(-\left(x-4\right)^2\le0\)
\(\Rightarrow D\le12\)
Vậy Max D = 12<=>x=4
\(E=-2x^2-4x+5\)
\(E=-2x^2-4x-2+7\)
\(E=-2\left(x+1\right)^2+7\le7\)
Vậy Max E = 7<=>x=-1