1+5+1+5+5+1+5+5+5+...+1+5+5+5+5+...+5+1 có 2018 Cs 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b )bạn sai đề câu b rồi đề phải thế này cmr với mọi số tự nhiên n thì ƯCLN(21n+4,14n+3)=1
GIẢI
gọi ưcln(21n+4,14n+3)là d
khi đó ta có
21n+4chia hết cho d và 14n+3 chia hết cho d
=>2(21n+4)chia hết cho d và 3(14n+3)chia hết cho d
=>42n+8 chia hết cho d và 42n +9chia hết cho d
=>42n+9-42n+8chia hết cho d
=>1chia hết cho d
=>d=1
vậy............
`M=(5^2018+1)/(5^2017+1)`
`1/5M=(5^2017+1/5)/(5^2017+1)`
`1/5M=1-(4/5)/(5^2017+1)`
Tương tự:
`1/5N=1-(4/5)/(5^2016+1)`
`5^2017+1>5^2016+1`
`=>(4/5)/(5^2017+1)<(4/5)/(5^2016+1)`
`=>1-(4/5)/(5^2017+1)>1-(4/5)/(5^2016+1)`
`=>1/5M>1/5N=>M>N`
\(M=\dfrac{5^{2018}+1}{5^{2017}+1}=5-\dfrac{4}{5^{2017}+1}\)
\(N=\dfrac{5^{2017}+1}{5^{2016}+1}=5-\dfrac{4}{5^{2016}+1}\)
mà \(-\dfrac{4}{5^{2017}+1}>-\dfrac{4}{5^{2016}+1}\)
nên M>N
\(B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+.....+\frac{1}{5^{2018}}+\frac{1}{5^{2019}}\)
\(\Rightarrow5B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.......+\frac{1}{5^{2017}}+\frac{1}{5^{2018}}\)
\(\Rightarrow5B-B=1-\frac{1}{5^{2019}}\)
\(\Rightarrow4B=1-\frac{1}{5^{2019}}\)
\(\Rightarrow B=\frac{1-\frac{1}{5^{2019}}}{4}< \frac{1}{4}\left(đpcm\right)\)
A = 1+5^2+5^3+5^4+...+5^2018+5^2019
5A = 5^1+5^3+5^4+...+5^2018+5^2019+5^2020
5A - A = 5^2020 + 5 - 1
4A = 5^2020 + 4
4A + 1 = 5^2020 + 4 - 1
4A - 1 = 5^2020 + 3
\(A=5^{2020}-5^{2019}+5^{2018}-...-5+1\\ 5A=5^{2021}-5^{2020}+5^{2019}-...-5^2-5\\ 5A+A=\left(5^{2021}-5^{2020}+5^{2019}-...-5^2-5\right)+\left(5^{2020}-5^{2019}+5^{2018}-...-5+1\right)\\ 6A=5^{2021}+1\\ A=\dfrac{5^{2021}+1}{6}\)
ko bít
tui cũng ko bít