K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2022

a:BC=10cm

=>AM=5cm

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

c: Xét tứ giác AMCF có

D là trung điểm chung của AC và MF

MA=MC

Do đó: AMCF là hình thoi

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=BH\cdot CH\)

\(\Leftrightarrow AH^2=9\cdot16=144\)

hay AH=12(cm)

Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)

\(\widehat{ADH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=DE(Hai đường chéo)

mà AH=12(cm)

nên DE=12cm

14 tháng 6 2021

A B C H 12 20 E

a, Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AB^2=400-144=256\Leftrightarrow AC=16\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{144}+\frac{1}{256}=\frac{256+144}{144.256}\)

\(\Rightarrow400AH^2=36864\Leftrightarrow AH^2=\frac{36864}{400}=\frac{2304}{25}\Leftrightarrow AH=\frac{48}{5}\)cm 

14 tháng 6 2021

b, * Áp dụng hệ thức : \(AH^2=AE.AB\)(1) 

Áp dụng định lí Pytago cho tam giác AHC vuông tại H 

\(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\) (2) 

Từ (1) ; (2)  suy ra : \(AE.AB=AC^2-HC^2\)( đpcm )

2 tháng 2 2021

Sau gần một buổi trưa lăn lội với Thales, đồng dạng ở câu b thì t đã nghĩ đến cách của lớp 7 ~ ai dè làm được ^^undefined

2 tháng 2 2021

vaidaibangioithe))):

25 tháng 12 2020

a) ta có AH⊥BC  \(\Rightarrow\)\(\widehat{AHB}=\widehat{AHC}\)=90 độ

ta có AB=AC \(\Rightarrow\)\(\Delta\)ABC cân tại A

\(\Rightarrow\)\(\widehat{ABC}\)=\(\widehat{ACB}\) hay\(\widehat{ABH}=\widehat{ACH}\)

Xét \(\Delta\)AHB\(\left(\widehat{AHB}=90độ\right)\) và \(\Delta\)AHC \(\left(\widehat{AHC}=90\right)độ\) có 

AB=AC(giả thiết)

\(\widehat{ABH}=\widehat{ACH}\) (chứng minh trên)

\(\Rightarrow\) \(\Delta\)AHB= \(\Delta\)AHC(cạnh huyền - góc nhọn)

\(\Rightarrow\)HB=HC(2 góc tương ứng)

vậy HB=HC

b) \(\Delta\)AHB= \(\Delta\)AHC(chứng minh câu a)

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\) hay \(\widehat{HAD}=\widehat{HAE}\)

ta có HD⊥AB \(\Rightarrow\widehat{HDA}=90độ\)

HE⊥AC \(\Rightarrow\widehat{HEA}=90độ\)

Xét \(\Delta\)AHD (\(\widehat{HDA}=90độ\)) và \(\Delta\)AHE \(\left(\widehat{HEA}=90\right)độ\) có 

\(\widehat{HAD}=\widehat{HAE}\) (chứng minh trên )

AH là cạnh huyền chung

\(\Rightarrow\)\(\Delta\)AHD = \(\Delta\)AHE (cạnh huyền -góc nhọn)

\(\Rightarrow HD=HE\) ( 2 góc tương ứng)

vậy HD=HE

c) ta có HD⊥AB  \(\Rightarrow\widehat{HDB}=90độ\)

HE⊥AC \(\Rightarrow\widehat{HEC}=90độ\)

\(\Delta\)ABC cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)  hay \(\widehat{DBH}=\widehat{ECH}\)

Xét \(\Delta\)HDB\(\left(\widehat{HDB}=90độ\right)\) và \(\Delta\)HEC \(\left(\widehat{HEC}=90độ\right)\)

BH=HC (chứng minh câu a)

\(\widehat{DBH}=\widehat{ECH}\) (chứng minh trên)

\(\Rightarrow\Delta HDB=\Delta HEC\) (cạnh huyền -góc nhọn)

\(\Rightarrow BD=EC\) (2 cạnh tương ứng )

vậy BD =EC

 

 

 

27 tháng 12 2020

ThX

 

a: AC=4cm

b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có

AM chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔAMN

Suy ra: MH=MN; AH=AN

hay AM là đường trung trực của NH

c: Xét ΔAHN có AH=AN

nên ΔAHN cân tại A

mà \(\widehat{HAN}=60^0\)

nên ΔAHN đều