( Dùng trường hợp cạnh-góc-cạnh để chứng minh )
Cho tam giác ABC có : AB = AC, trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho : BM = CN
CMR: AM = AN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\widehat{ABC}+\widehat{ABM}=180^0\)(kề bù)
\(\widehat{ACB}+\widehat{ACN}=180^0\)(kề bù)
Tam giác ABC cân tại A (vì AB = AC) nên \(\widehat{ABC}=\widehat{ACB}\)
Từ 3 điều trên suy ra: \(\widehat{ABM}=\widehat{ACN}\)
\(\Delta ABM=\Delta ACN\left(c.g.c\right)\Rightarrow AM=AN\) (2 cạnh tương ứng)
a: Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
=>AM=AN
b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có
BM=CN
góc M=góc N
Do đó: ΔBME=ΔCNF
c: góc OBC=góc EBM
góc OCB=góc FCN
mà góc EBM=góc FCN
nên góc OBC=góc OCB
=>OB=OC
mà AB=AC
nên AO là trung trực của BC
=>AO vuông góc với BC
ΔAMN cân tại A
mà AO là đường cao
nên AO là phân giác của góc MAN
Hình tự vẽ , giải :
a) Vì \(\Delta ABC\) có \(AB=AC\Rightarrow\Delta ABC\) cân tại A \(\Leftrightarrow\widehat{B}=\widehat{C}\) ( T/c tam giác cân )
Có I nằm trên BC ( vì I là trung điểm BC ) nên có \(\widehat{ABI}=\widehat{ACI}\left(\widehat{B}=\widehat{C}\right)\)
b) Có \(\widehat{B}+\widehat{ABM}=180^0=\widehat{C}+\widehat{ACN}\) ( cặp góc kề bù ). Mà \(\widehat{B}=\widehat{C}\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\) và \(\Delta ACN\) : \(BM=CN\left(gt\right)\) ; \(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\) ; \(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABM=\Delta ACN\left(c.g.c\right)\Leftrightarrow AM=AN\) ( 2 cạnh tương ứng )
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
a: Xét ΔABC và ΔDEC có
CA=CD
\(\widehat{ACB}=\widehat{DCE}\)
CB=CE
Do đó:ΔACB=ΔDCE
b: Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: AB//DE
c: Xét ΔAMC và ΔDNC có
AM=DN
\(\widehat{MAC}=\widehat{NDC}\)
AC=DC
Do đó: ΔAMC=ΔDNC
d: Xét tứ giác AMDN có
AM//DN
AM=DN
Do đó: AMDN là hình bình hành
Suy ra: Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
mà C là trung điểm của AD
nên C là trung điểm của MN
https://hoc24.vn/cau-hoi/1cho-tam-giac-abc-co-2-duong-trung-tuyen-bm-va-cn-cat-nhau-tai-g-chung-minh-bm-cn-dfrac32bc2cho-tam-giac-abc-d-la-trung-diem-ac-tren-bd-lay-e-sao-cho-be2ed-f-thuoc-tia-doi-cua-tia.5863553679489
trl câu này hộ mik với chiều nay cần dùng r
( Hình bạn tự vẽ giúp mình nha )
a) Xét △ ABM và △ ACN có
AB = AC
BM = CN
\(\widehat{ABM}=\widehat{ACN}\)
⇒ △ ABM = △ ACN ( c - g - c )
⇒ AM = AN ( hai cạnh tương ứng )
Suy ra: △ AMN cân tại A
b) Xét tam giác vuông BME và tam giác vuông CNF ta có:
MB = CN
\(\widehat{EMB}=\widehat{CNF}\) ( vì △ AMN cân tại A )
⇒ △ BME = △ CNF ( ch - gn )
c) Vì △ BME = △ CNF ( cmt )
⇒ ME = CF
⇒ EA = FA
Xét tam giác vuông EAO và tam giác vuông AOF ta có:
AE = FA
AO cạnh chung
⇒ △ EOA = △ FOA ( ch - cgv )
⇒ \(\widehat{EAO}=\widehat{FAO}\)
Hay AO là tia phân giác góc \(\widehat{MAN}\)
d) Ta có: EO ⊥ AM
MH ⊥ AM
⇒ EO // MH
Lại có: \(\widehat{AOE}=\widehat{AHM}\) ( cùng phụ \(\widehat{EAO}\) )
Từ đó suy ra: A, O, H thẳng hàng
Trong \(\Delta ABC\)có: \(AB=AC\) (gt)
\(\Rightarrow\Delta ABC\)cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)(2 góc đáy)
Mà \(\widehat{ABC}+\widehat{ABM}=180^o\)
\(\widehat{ACB}+\widehat{ACN}=180^o\)
Nên \(\widehat{ABM}=\widehat{ACN}\)
Xét \(\Delta ABM\)và \(\Delta ACN\)có:
\(AB=AC\)(gt)
\(\widehat{ABM}=\widehat{ACN}\)(chứng minh trên)
\(MB=NC\)(gt)
Do đó \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)
\(\Rightarrow AM=AN\)