Tìm giá trị nhỏ nhất của biểu thức sau :
I = x mũ 2 + giá trị tuyệt đối của x - 1 phần 2 - 5
Các Bạn Ơi Giúp Mình Vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(3+x\right)^{2022}+\left|2y-1\right|-5\ge-5\\ P_{min}=-5\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=\left|x+\frac{3}{2}\right|\)
Vì \(\left|x+\frac{3}{2}\right|\ge0\)
Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)
\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)
Ta có: \(\frac{x+1}{x}=\pm1+\frac{1}{x}\)
Ta thấy: \(\pm1+\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\frac{1}{x}\) lớn nhất
\(\Leftrightarrow\) x nhỏ nhất
\(\Leftrightarrow x=\pm1\)
*Chú ý: Có những chỗ phải viết kí hiệu của giá trị tuyệt đối nhưng mình không viết được. Bạn tự hiểu nhé!
Mong bạn thông cảm và chúc bạn học giỏi!
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)