K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét △ ANK và  △ BKL :

AN = BK (gt)

∠ A = ∠ B = 90 0

AK = BL (vì AB = BC, BK = CL)

Do đó  △ ANK =  △ BKL (c.g.c)

⇒ NK = KL (1)

Xét  △ BKL và  △ CLM:

BK = CL (gt)

∠ B =  ∠ C =  90 0

BL = CM (vì BC = CD, CL = DM)

Do đó:  △ BKL =  △ CLM (c.g.c)

⇒ KL = LM (2)

Xét  △ CLM và  △ DMN :

CL = DM (gt)

∠ C =  ∠ D =  90 0

CM = DN (vì CD = DA, DM = AN)

Do đó:  △ CLM =  △ DMN (c.g.c)

⇒ LM = MN (3)

Từ (1), (2) và (3) ⇒ NK = KL = LM = MN

Tứ giác MNKL là hình thoi

ANK = BKL ⇒ (ANK) = (BKL)

Trong tam giác ANK có A là góc vuông ⇒  ∠ (ANK) +  ∠ (AKN) =  90 0

⇒ ∠ (BKL) +  ∠ (AKN) =  90 0  hay  ∠ (NKL) =  90 0

Vậy tứ giác MNKL là hình vuông.