K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

Nhớ cảm ơn mk á (:

Bình chọn cho vui 

Lâu lâu vẫn phải làm việc tốt

22 tháng 9 2018

Mk bình chọn rồi đó nha nhưng lần sau bn ko nên đăng nhưng câu hỏi linh tinh nhá 

Hok tốt

.........

22 tháng 9 2018

mk đã bình chọn cho bạn rồi! hay lắm

Nhưng bạn nhớ lần sau đừng đăng những câu hỏi linh tinh như vậy nữa nhé!

kb nha 

CHÚC BẠN HỌC TỐT!

22 tháng 10 2018

ko đăng câu hỏi linh tinh

Hk tốt

P/s : ko nhận gạch đá

22 tháng 10 2018

không đăng câu hỏi linh tinh nha

16 tháng 2 2019

Cách khác nè Phương: (đây là phương pháp chỉ ra một giá trị rồi chứng minh các giá trị còn lại không thỏa mãn)

a/               Giải

+) Với n = 0 thì \(n^2+2n+12=12\) không là số chính phương.

+) Với n = 1 thì \(n^2+2n+12=15\) không là số chính phương.

+) Với n = 2 thì \(n^2+2n+12=20\) không là số chính phương.

+) Với n = 3 thì \(n^2+2n+12=27\) không là số chính phương.

+) Với n = 4 thì \(n^2+2n+12=36=6^2\) là số chính phương.

+) Với n > 4 thì \(n^2+2n+12\) không là số chính phương vì:

\(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\)

Thật vậy: \(\left(n+1\right)^2< n^2+2n+12\)

\(\Leftrightarrow n^2+2n+12-n^2-2n-1>0\)

\(\Leftrightarrow11>0\) (luôn đúng)

Do vậy \(\left(n+1\right)^2< n^2+2n+12\) (1)

C/m: \(n^2+\left(2n+12\right)< \left(n+2\right)^2\)

\(\Leftrightarrow n^2+4n+4-n^2-2n-12>0\)

\(\Leftrightarrow2n-8>0\) (luôn đúng do n > 4) (2)

Từ (1) và (2) suy ra với n > 4 thì \(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\) hay \(n^2+2n+12\) không là số chính phương.

Vậy 1 giá trị n = 4

16 tháng 2 2019

b/  +)Với n = 0 thì \(n\left(n+3\right)=0\) là số chính phương

+) Với n = 1 thì \(n\left(n+3\right)=4\) là số chính phương

  +) Với n > 1 thì \(n\left(n+3\right)\) không là số chính phương vì:

\(\left(n+1\right)^2< n\left(n+3\right)< \left(n+2\right)^2\)

Thật vậy: \(\left(n+1\right)^2< n\left(n+3\right)\Leftrightarrow n^2+3n-n^2-2n-1>0\)

\(\Leftrightarrow n-1>0\) (đúng với mọi n > 1) (1)

Ta sẽ c/m: \(n\left(n+3\right)< \left(n+2\right)^2\)

\(\Leftrightarrow n^2+4n+4-n^2-3n>0\)

\(\Leftrightarrow n+4>0\) (luôn đúng với mọi n > 0) (2)

Từ (1) và (2) suy ra với mọi n > 1 thì \(n\left(n+3\right)\) không là số chính phương.

Vậy n = 0;n = 1

14 tháng 12 2018

cai này mình cũng thi

đọc sách vì tương lai

hok tốt

mình ủng hộ

14 tháng 12 2018

nếu thế bình chọn cho mk vs bn tốt ưi ^^

16 tháng 2 2019

mk bình chọn r nha . k mk

15 tháng 2 2019

Mk bình chọn rồi đóvui

15 tháng 2 2019

t đã đọc và khóc rất nhiều.