K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

bạn có viết sai đề kg

25 tháng 8 2018

a) Nhận xét :

/ x + 8 / > 0 với mọi x

/ y - 3 / > 0 với mọi y

=> / x + 8 / + / y - 3 / > 0 

=> / x + 8 / + / y - 3 / + 2018 > 2018

=> M > 2018

=> Giá trị nhỏ nhất của M = 2018

Dấu " = " xảy ra khi :

/ x + 8 / = 0

và / y - 3 / = 0

=> x + 8 = 0

và y - 3 = .0

=> x = - 8

Và y = 3

Vậy giá trị  nhỏ nhất của M là 2018 khi x = - 8 và y = 3

b) Nhận xét :

/ x + 2 / > 0 với mọi x 

/ y - 1 / > 0 với mọi y

=> / x + 2 / + / y - 1 / > 0

=> - / x + 2 / - / y - 1 / < 0

=> - / x + 2 / - / y - 1 / + 1999 < 1999

=> N < 1999

=> Giá trị lớn nhất của N = 1999

Dấu " = " xảy ra khi :

 / x + 2 / = 0

và / y - 1 / = 0

=> x + 2 = 0

và y - 1 = 0

=> x = - 2 

và y = 1

Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1

25 tháng 6 2017

Gọi biểu thức trên là A

Ta có

\(A=\frac{n^3-2n^2+3}{n-2}\)

\(A=\frac{n^2\left(n-2\right)+3}{n-2}\)

Để \(A\in Z\Leftrightarrow\left(n-2\right)\in U\left(3\right)\)

Vậy ta có:

\(n-2=-3\\ \Rightarrow n=-1\)

\(n-2=-1\\ \Rightarrow n=1\)

\(n-2=1\\ \Rightarrow n=3\)

\(n-2=3\\ \Rightarrow n=5\)

30 tháng 5 2020

Ta có  M = x+ x2y - 2x2 - xy - y+3y + x + 2017

               = x2(x + y - 2) - y(x + y - 2) + x + y - 2 + 2019

thay x + y - 2 = 0 vào M ta có :  M = x2.0 - y.0 + 0 + 2019

                                                      = 2019

13 tháng 6 2020

\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)

\(=\left(x+y-2\right)\left(x^2-y+1\right)+2019\)

Thay \(x+y-2=0\)vào đa thức ta được:

\(M=0.\left(x^2-y+1\right)+2019=2019\)

10 tháng 12 2019

a) A xác định khi \(\left\{{}\begin{matrix}x>0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\sqrt{x}\ne3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne9\end{matrix}\right.\)

b)Với \(x>0;x\ne9\), ta có:

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Để A đạt giá trị nguyên thì \(\frac{4}{\sqrt{x}-3}\) đạt giá trị nguyên

Hay\(4⋮\left(\sqrt{x}-3\right)\)

Suy ra \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

TH1: \(\sqrt{x}-3=\pm1\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3=1\\\sqrt{x}-3=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=4\end{matrix}\right.\)

TH2: \(\sqrt{x}-3=\pm2\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3=2\\\sqrt{x}-3=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=5\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=25\\x=1\end{matrix}\right.\)

TH3: \(\sqrt{x}-3=\pm4\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-3=4\\\sqrt{x}-3=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=7\\\sqrt{x}=-1\left(Loại\right)\end{matrix}\right.\Rightarrow x=49\)

Vậy \(x\in\left\{1;4;16;25;49\right\}\)