K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n^2+1\right)}=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n^2+1}\)

=>phân số ban đầu chưa tối giản với mọi n

29 tháng 8 2017

Ta có :

\(\frac{n^7+n^2+1}{n^8+n+1}=\frac{n^7-n^4+n^4-n+n^2+n+1}{n^8-n^5+n^5-n^2+n^2+n+1}\)

\(=\frac{n^4\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)}{n^5\left(n^3-1\right)+n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(=\frac{n^4\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}{n^5\left(n-1\right)\left(n^2+n+1\right)+n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)

\(=\frac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n+1\right)}\)

\(=\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\)

Do phân số \(\frac{n^7+n^2+1}{n^8+n+1}\) còn thu gọi được thành \(\frac{n^5-n^4+n^2-n+1}{n^6-n^5+n^3-n+1}\) nên nó chưa tối giản (đpcm)

5 tháng 11 2018

Ta có :

 \(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)

\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Mặt khác :

\(n^7+n^2+1=n^7-n+n^2+n+1\)

\(=(n-1)(n^6-1)+n^2+n+1\)

\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản

Hok tốt :>

5 tháng 4 2019

a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)

Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

\(\Rightarrow(60n+5)-(60n+4)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số  tối giản với mọi số tự nhiên n

Câu b tự làm

\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)