tìm tỉ số của A và B biết rằng :
\(A=\frac{1}{1.1981}+\frac{1}{2.1980}+....+\frac{1}{n.\left(1980+n\right)}+....+\frac{1}{25.2005}\)
\(B=\frac{1}{1.26}+\frac{1}{2.27}+...+\frac{1}{m\left(25+m\right)}+...+\frac{1}{1980.2005}\)
trong đó A có 25 số hạng vfa B có 1980 số hạng
Trả lời:
bạn tham khảo ở link này: https://h.vn/hoi-dap/question/227001.html
Học tốt
ta có : \(\frac{1}{n\left(1980-n\right)}=\frac{1}{1980}\left(\frac{1}{n}-\frac{1}{1980+n}\right)\) ( 1 )
\(\frac{1}{m\left(25+m\right)}=\frac{1}{25}\left(\frac{1}{m}-\frac{1}{25+m}\right)\) ( 2 )
áp dụng triển khai (1) cho mỗi số hạng của A và triển khai (2) cho mỗi số hạng B , ta được :
\(A=\frac{1}{1980}\left(\frac{1}{1}-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+....+\frac{1}{25}-\frac{1}{2005}\right)\)
\(=\frac{1}{1980}\left[\left(\frac{1}{1}+\frac{1}{2}+....+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\) (3)
\(B=\frac{1}{25}\left(\frac{1}{1}-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+....+\frac{1}{1980}-\frac{1}{2005}\right)\)
\(=\frac{1}{25}\left[\left(\frac{1}{1}+\frac{1}{2}+....+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{2005}\right)\right]\)
nhận thấy hai biểu thức trong hai dấu ngoặc vế bên phải của B có phần chung là :
\(\frac{1}{26}+\frac{1}{27}+...+\frac{1}{1980}\) . do đó , sau khi rút gọn , ta được :
\(B=\frac{1}{25}\left[\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\right]\) (4)
từ (3) Và (4) :
\(\Rightarrow A:B=\frac{25}{1980}\)
vậy , ta được \(\frac{A}{B}=\frac{25}{1980}=\frac{5}{396}\)