giải hpt:
\(\left\{{}\begin{matrix}2x+2y+xy=5\\27\left(x+y\right)+y^3+7=26x^3+27x^2+9x\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
3) ta xét phương trình thứ nhất
\(x-\frac{1}{x}=y-\frac{1}{y}\)
<=>\(x-y-\frac{1}{x}+\frac{1}{y}=0\)
<=>\(x-y-\left(\frac{1}{x}-\frac{1}{y}\right)=0\)
<=>\(x-y-\left(\frac{y-x}{xy}\right)=0\)
<=>\(\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
<=>\(x=y\) hoặc xy=-1
Với x=y thay vào phương trình thứ hai ta có
\(2x=x^3+1
\)
<=> \(x^3-2x+1=0\)
<=>\(x^3-x^2+x^2-x-x+1=0\)
<=>\(\left(x-1\right)\left(x^2+x-1\right)=0\)
<=> \(x=1\) hoặc \(x^2+x-1=0\)
\(x^2+x-1=0\) <=> \(x=\frac{-1+\sqrt{5}}{2}\)
hoặc \(x=\frac{-1-\sqrt{5}}{2}\)
Đối với xy=-1 thì y=-1/x thay vào phương trình 2 giải bình thường
1.
\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)
cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ
suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý
vậy pt vô nghiệm
Biến đổi pt bên dưới:
\(27\left(x+y\right)+x^3+y^3+8=27x^3+27x^2+9x+1\)
\(\Leftrightarrow27\left(x+y\right)+\left(x+y\right)\left(\left(x+y\right)^2-3xy\right)+8=\left(3x+1\right)^3\) (1)
Biến đổi 1 xíu pt bên trên: \(xy=5-2\left(x+y\right)\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow b=5-2a\) thế vào (1) ta được:
\(27a+a\left(a^2-3\left(5-2a\right)\right)+8=\left(3x+1\right)^3\)
\(\Leftrightarrow27a+a^3+6a^2-15a+8=\left(3x+1\right)^3\)
\(\Leftrightarrow a^3+6a^2+12a+8=\left(3x+1\right)^3\Leftrightarrow\left(a+2\right)^3=\left(3x+1\right)^3\)
\(\Leftrightarrow a+2=3x+1\Leftrightarrow x+y+2=3x+1\Leftrightarrow y=2x-1\)
Thế vào pt đầu:
\(2x+2\left(2x-1\right)+x\left(2x-1\right)=5\Leftrightarrow2x^2+5x-7=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-\dfrac{7}{2}\Rightarrow y=-8\end{matrix}\right.\)
Vậy hệ đã cho có 2 cặp nghiệm \(\left(x;y\right)=\left(1;1\right);\left(-\dfrac{7}{2};-8\right)\)