giải hpt:
\(\left\{{}\begin{matrix}x+\dfrac{1}{x}+y-\dfrac{1}{y}=3\\x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=5\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2\right)^2-x^2y^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\\left(x^2+y^2+xy\right)\left(x^2+y^2-xy\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^2+y^2-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2=5\\xy=2\end{matrix}\right.\)
\(\Rightarrow x^2+\left(\dfrac{2}{x}\right)^2=5\)
\(\Leftrightarrow x^4-5x^2=4=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: ...
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}\right)^2-\left(y+\dfrac{1}{y}\right)^2=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)\left(x+\dfrac{1}{x}-y-\dfrac{1}{y}\right)=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=7\\x+\dfrac{1}{x}-y-\dfrac{1}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}=5\\y+\dfrac{1}{y}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-5x+1=0\\y^2-2y+1=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: ...
\(\left\{{}\begin{matrix}\dfrac{x+y}{xy}=-\dfrac{1}{2}\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{u}{v}=-\dfrac{1}{2}\\u^2-2v=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}v=-2u\\u^2-2v=5\end{matrix}\right.\) \(\Rightarrow u^2+4u=5\)
\(\Leftrightarrow...\)
ĐK: `x ne 2; y ne -1`
Đặt `{a=(1/(x-2)),(b=1/(y+1)):}`
Có: `{(2a+b=3),(4a-3b=1):}`
`<=>{(4a+2b=6),(4a-3b=1):}`
`<=>{(2a+b=3),(5b=5):}`
`<=>{(2a+1=3),(b=1):}`
`<=>{(a=1),(b=1):}`
``
`=>{(1/(x-2)=1),(1/(y+1)=1):}`
`<=>{(x-2=1),(y+1=1):}`
`<=>{(x=3),(y=0):}` (TM)
``
Vậy `(x;y)=(3;0)`.
ĐKXĐ : x;y \(\ne0\)
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=-2\\\dfrac{3}{x}+\dfrac{2}{y}=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\\dfrac{1}{x}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9+\dfrac{1}{y}=-1\\x=\dfrac{1}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{1}{10}\\x=\dfrac{1}{9}\end{matrix}\right.\)
Đặt \(\left(x-2\right)^2=a;\dfrac{1}{\sqrt{y+5}}=b\)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=3\\a-2b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=1\\y+5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{3;1\right\}\\y=-4\end{matrix}\right.\)
a)\(\left\{{}\begin{matrix}\dfrac{10}{\sqrt{12x-3}}+\dfrac{5}{\sqrt{4y+1}}=1\\\dfrac{7}{\sqrt{12x-3}}+\dfrac{8}{\sqrt{4y+1}}=1\end{matrix}\right.\)
ĐK: \(x>\dfrac{1}{4};y>-\dfrac{1}{4}\), đặt \(a=\dfrac{1}{\sqrt{12x-3}};b=\dfrac{1}{\sqrt{4y+1}}\)với a,b>0
khi đó, ta có hệ phương mới \(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}10a+5b=1\\7a+8b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}80a+40b=8\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}45a=3\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35a+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\35.\dfrac{1}{15}+40b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{15}\\b=\dfrac{1}{15}\end{matrix}\right.\)
thay \(\dfrac{1}{\sqrt{12x-3}}=a\) hay \(\dfrac{1}{\sqrt{12x-3}}=\dfrac{1}{15}\Rightarrow\sqrt{12x-3}=15\Leftrightarrow12x-3=225\Leftrightarrow12x=228\Leftrightarrow x=19\left(TMĐK\right)\) thay \(\dfrac{1}{\sqrt{4y+1}}=b\) hay
\(\dfrac{1}{\sqrt{4y+1}}=\dfrac{1}{15}\Rightarrow\sqrt{4y+1}=15\Leftrightarrow4y+1=225\Leftrightarrow4y=224\Leftrightarrow y=56\left(TMĐK\right)\)
Vậy (x;y)=(9;56) là nghiệm duy nhất của hệ phương trình đã cho.
b)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=4\\x\left(1+4y\right)+y=2\end{matrix}\right.\)
ĐK: x,y#0, khi đó \(\dfrac{1}{x}+\dfrac{1}{y}=4\Rightarrow x+y=4xy\)
Do đó \(x\left(1+4y\right)+y=2\Leftrightarrow x+4xy+y=2\Leftrightarrow x+x+y+y=2\Leftrightarrow2\left(x+y\right)=2\Leftrightarrow x+y=1\)
Mà \(4xy=x+y\Leftrightarrow4xy=1\Leftrightarrow xy=\dfrac{1}{4}\)
Vậy \(x+y=1;xy=\dfrac{1}{4}\)
Do đó x,y là nghiệm của phương trình:
\(t^2-t+\dfrac{1}{4}=0\)
\(\Delta=b^2-4ac=1-4.1.\dfrac{1}{4}=0\)
Phương trình có nghiêm kép \(x_1=x_2=-\dfrac{b}{2a}=-\dfrac{-1}{2}=\dfrac{1}{2}\)
\(\Rightarrow x=y=\dfrac{1}{2}\left(nhận\right)\)
Vậy (x;y)=\(\left(\dfrac{1}{2};\dfrac{1}{2}\right)\) là nghiệm duy nhất của hệ phương trình đã cho.
Đặt \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=a\\y-\dfrac{1}{y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}=a^2-2\\y^2+\dfrac{1}{y^2}=b^2+2\end{matrix}\right.\)hệ đã cho tương đương:
\(\left\{{}\begin{matrix}a+b=3\\a^2+b^2=5\end{matrix}\right.\) \(\Rightarrow a^2+\left(3-a\right)^2-5=0\Rightarrow a^2-3a+2=0\)
\(\Rightarrow\left[{}\begin{matrix}a=1;b=2\\a=2;b=1\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=1\\y-\dfrac{1}{y}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-x+1=0\left(vn\right)\\y^2-2y-1=0\end{matrix}\right.\) (loại)
TH2: \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y-\dfrac{1}{y}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2-2x+1=0\\y^2-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\\left[{}\begin{matrix}y=\dfrac{1-\sqrt{5}}{2}\\y=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy hệ đã cho có 2 cặp nghiệm:
\(\left(x;y\right)=\left(1;\dfrac{1-\sqrt{5}}{2}\right);\left(1;\dfrac{1+\sqrt{5}}{2}\right)\)
Đặt \(a=x+\dfrac{1}{x}\Leftrightarrow a^2=x^2+\dfrac{1}{x^2}+2\Leftrightarrow x^2+\dfrac{1}{x^2}=a^2-2\)
\(b=y-\dfrac{1}{y}\Leftrightarrow b^2=y^2+\dfrac{1}{y^2}-2\Leftrightarrow y^2+\dfrac{1}{y^2}=b^2+2\)
Nên \(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}=5\Leftrightarrow a^2-2+b^2+2=5\Leftrightarrow a^2+b^2=5\)Vậy ta có hệ phương trình \(\left\{{}\begin{matrix}a+b=3\\a^2+b^2=5\left(1\right)\end{matrix}\right.\)
Ta có a+b=3\(\Leftrightarrow b=3-a\)
Thay b=3-a vào (1)\(\Leftrightarrow a^2+\left(3-a\right)^2=5\Leftrightarrow a^2+9-6a+a^2=5\Leftrightarrow2a^2-6a+4=0\Leftrightarrow2\left(a^2-3a+2\right)=0\Leftrightarrow a^2-3a+2=0\Leftrightarrow a^2-a-2a+2=0\Leftrightarrow a\left(a-1\right)-2\left(a-1\right)=0\Leftrightarrow\left(a-1\right)\left(a-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a-1=0\\a-2=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}b=2\\b=1\end{matrix}\right.\)
TH1:\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+\dfrac{1}{x}=1\\y-\dfrac{1}{y}=2\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2-x+1=0\\y^2-2y-1=0\end{matrix}\right.\)
Ta có \(x^2-x+1=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy phương trình (2) vô nghiệm
TH2: \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y-\dfrac{1}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x^2-2x+1=0\\y^2-y-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=\dfrac{1\pm\sqrt{5}}{2}\end{matrix}\right.\)
Vậy (x,y)={(\(1;\dfrac{1+\sqrt{5}}{2}\));(\(1;\dfrac{1-\sqrt{5}}{2}\))}