K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

bài của bạn gần giống bài của mình

13 tháng 11 2018

ghen j đồng bào

4 tháng 4 2018

a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)

mà có EG=HF=> EFGH là hình thoi (*)

ta có BD//HE=> góc HEF vuông (**)

từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )

4 tháng 4 2018

A B C D E F G H M

a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)

\(\Rightarrow EH=EF=FG=HG\)

=>EFGH là hình thoi

\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)

\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)

=>\(\widehat{HEF}=90^0\)

=> EFGH  là hình vuông

b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)

\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)

\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)

\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)

\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)

gọi N là giao điểm của AG và DF 

cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF

=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM

\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A

c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)

\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)

Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)

Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)

Trong tam giác DCF theo định lý py ta go có:

\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)

 Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)

15 tháng 10 2016

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

15 tháng 10 2016

chiu

tk nhe

xin do

bye

6 tháng 12 2021

\(Ta\) \(có\) \(S_{ABCD}=6.6=36\left(cm^2\right)\)

\(S_{EFGH}=\dfrac{1}{2}S_{ABCD}=\dfrac{1}{2}.36=18\left(cm^2\right)\)

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông