Trong giờ học thể dục, tổ 1 lớp 12A có 12 học sinh gồm 7 học sinh nam và 5 học sinh nữ tập trung ngẫu nhiên theo 1 hàng dọc. Tính xác suất để người đứng đầu hàng và cuối hàng đều là học sinh nam?
A. P(A)=7/23
B. P(A)= 7/15
C. P(A)=7/22
D. P(A)=5/22
Cho mình biết rõ cách giải nhé
Lời giải:
Xếp $12$ học sinh gồm $7$ nam, $5$ nữ theo hàng dọc ta có \(12!\) cách xếp
Trươc tiên, chọn 1 bạn là nam đứng đầu hàng ta có $7$ cách chọn
Chọn 1 bạn nam đứng cuối hàng ta có $6$ cách chọn
$10$ bạn còn lại xếp ở bên trong ta có \(10!\) cách xếp
Do đó số kết cục thuận lợi: \(7.6.10!\)
Vậy xác suất để người đứng hàng đầu và cuối đều là nam là:
\(P(A)=\frac{7.6.10!}{12!}=\frac{7}{22}\)
Đáp án C