CMR: \(m.n.\left(m^2-n^2\right)⋮3\left(\forall m,n\inℤ\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.4⋮25.4=100\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-1\right)\left(n-2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^2\left(n-1\right)-2n\left(n-1\right)⋮6\)
c) \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n^3-n⋮6\)
sử dụng phương pháp quy nạp
*với n=1 thì 2 chia hết cho2
*với n=2 thì 3*4=12 chia hết cho 4
thử đúng đến n=k cần cm n=k+
ta có (k+1)(k+2)(k+3).....(k+k-1)(k+k)chia hết cho 2k
n=k+1 biểu thức có dạng (k+1+1)(k+1+2)....(k+1+k)(k+1+k+1)
=2(k+1)(k+2)(k+3)....(k+k-1)(k+k)(k+k+1)chia hết cho2k*2=2k+1
bài này có lấn sang 7 hàng đẳng thức lớp 8 :))
\(m.n.\left(m^2-1-n^2+1\right)\)
\(=m.n.\left[\left(m-1\right).\left(m+1\right)-\left(n-1\right).\left(n+1\right)\right]\)
\(=m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)\)
vì m,m-1,m+1 và n,n-1,n+1 là tích của 3 số liên tiếp => \(m.n.\left(m-1\right).\left(m+1\right)⋮3,m.n.\left(n-1\right).\left(n+1\right)⋮3\)
=> \(m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)⋮3\)
hay \(m.n.\left(m^2-n^2\right)⋮3\left(đpcm\right)\)
eei cho sửa cái đoạn dòng thứ 4 nha
vì m.(m+1).(m-1) và n.(n+1).(n-1) là tích của 3 số liên tiếp
=> m.(m+1).(m-1) chia hết cho 3
và n.(n+1).(n-1) chia hết cho 3
=> ... như lúc này