K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

Mik làm cho câu b thôi ! Thông cảm nhé !

b) Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1) 
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2) 
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8. 
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3) 
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau 
=> a chia hết cho (b.c) 
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1

2 tháng 11 2015

ai tích cho tui đi để cho tui tròn 300 điểm coi!

tui sẽ cảm tạ = cách cho lại 3 l i k e !

11 tháng 1 2019

1) Ta có: 3n2+3n

= 3(n2+n) \(⋮\) 3

Vì n là STN nên:

TH1: n là số tự nhiên lẻ.

\(\Rightarrow\)n2 sẽ lẻ \(\Rightarrow\) n2+n bằng lẻ cộng lẻ và bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2 \(\Rightarrow\) 3(n2+n) \(⋮\) 2

\(\Rightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và cũng chia hết cho 2 nên số đó chia hết cho 6.

TH2: n là số tự nhiên chẵn.

\(\Rightarrow\) n2 sẽ chẵn \(\Rightarrow\) n2+n bằng chẵn cộng chẵn bằng chẵn \(\Rightarrow\) n2+n \(⋮\) 2\(\Rightarrow\)

3(n2+n) \(⋮\) 2\(\Leftrightarrow\) 3n2+3n \(⋮\) 2

Vì 3n2+3n chia hết cho 3 và chia hết cho 2 nên số đó chia hết cho 6.

Vậy với mọi trường hợp số tự nhiên thì 2n2+3n đều chia hết cho 6. Vậy với mọi n là số tự nhiên thì 2n2+3n sẽ chia hết cho 6 (đpcm)

23 tháng 8 2022

3)

Gọi 5 số tự nhiên liên tiếp là k; k+1; k+2; k+3; k+4

\RightarrowTích của chúng là k(k+1)(k+2)(k+3)(k+4)

Trong 5 số tự nhiên liên tiếp có ít nhất 2 số chẵn liên tiếp. Mà tích 2 số chẵn liên tiếp 8\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮8(1)

Trong 5 số tự nhiên liên tiếp có ít nhất 1 số ⋮5\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮5                                                                 (2)

Trong tích 5 số tự nhiên liên tiếp có tích của 3 số tự nhiên liên tiếp mà tích của 3 số tự nhiên liên tiếp⋮3\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3                                                                                                                                                                                           (3)

Từ (1),(2),(3) và ƯCLN(3;5;8)=1\Rightarrowk(k+1)(k+2)(k+3)(k+4)⋮3.5.8=120

Vậy tích của 5 số tự nhiên liên tiếp ⋮120

20 tháng 10 2019

các bạn có thể cho mình biết được không,đang cần gấp lắm.

25 tháng 2 2020

Đây là bài làm của mình. Sai sót gì mong bạn thông cảm.

a) Gọi 3 số tự nhiên liên tiếp là : a (a-1) (a+1)

Tích 3 STN liên tiếp luôn có một số chẵn và một số chia hết cho 3. 

=> a ( a-1) (a +1) \(⋮\)2; 3 

=> a (a-1) (a+1 ) \(⋮\)6

Vậy tích 3 STN liên tiếp chia hết cho 6 (lớp 8 có bài này).

b) Gọi tổng 3 sô tự nhiên liên tiếp là b + (b +1) + (b +2)

                                                         = b + b + 1 + b +2

                                                          = 3b + 3

Vì 3b \(⋮\)3 => 3b + 3 \(⋮\)3

Do đó b + (b+1) + (b+2) chia hết cho 3.

Vậy tổng 3 STN liên tiếp chia hết cho 3.

14 tháng 10 2018

a,ta có 2 STN liên tiếp là : a,a+1 

a . (a + 1 ) 

Trường hợp 1

Nếu a là số chẵn thì \(⋮\)=> a . ( a + 1 ) \(⋮\)2 ( Áp dụng tính chất : Nếu có 1 thừa số trong 1 tích chia hết cho số đó thì tích chia hết cho số đó : Ví dụ : 1 . 2 ; 2 chia hết cho 2 => 1.2 = 2 chia hết cho 2 ; 2.3 chia hết cho 2 vì 2 chia hết cho 2 )

Trường hợp 2 

Nếu a là số lẻ => a + 1 là số chẵn chi hết cho 2 => a . (a + 1) chia hết cho 2 

Vậy Tích của 2 số tự nhiên liên tiếp chia hết cho 2 

14 tháng 10 2018

Câu b : 

ta gọi như câu a : a , a+1,a+2 

ta có : a . ( a + 1 ) . ( a + 2 ) 

TH1 nếu a chia hết cho 3 => tích của 3 STH liên tiếp chai hết cho 3 

TH2 Nếu a+1 chia hết cho 3 => Tích của  3 STH liên tiếp chai hết cho 3 

TH3 nếu a + 2 chia hết cho 3 = > Tích của  3 STH liên tiếp chai hết cho 3 

23 tháng 11 2016

gọi 4 số tự nhiên liên tiếp là : n , n+1 , n+2 ,n+3 ( n thuộc N )

A(n)=n (n+1) (n+2) (n+3)

+ trong 4 số n, n+1, n+2, n+3 tồn tại một số chia hết cho 2 nên A(n) chia hết cho 2

+ trong 4 số n, n+1 ,n+2,n+3 tồn tại 1 số chia hết cho 3 nên A(n) chia hết cho 3

+ trong 4 số n,n+1,n+2,n+3 tồn tại một số chia hết cho 4 nên A(n) chia hết cho 4

Vì A(n) chia hết cho 2,3,4 suy ra A(n) chia hết cho 24

11 tháng 10 2018

a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.

Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)

=3(a+1) \(⋮3\)(vì \(3⋮3\))

Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.

b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3

Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6

=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)

Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.

11 tháng 10 2018

a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )

Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3

b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )

Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.

b) cho 1 số tự nhiên a bất kì thì 4 số TN liên tiếp là a -> a+ 1 ; a + 2 ; a + 3 
tổng = a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4(a + 1) + 2 chia 4 dư 2 
hoặc cho 1 số tự nhiên a - 1 bất kì thì 4 số TN liên tiếp là a - 1 -> a ; a + 1 ; a + 2 
tổng = a - 1 + a + a + 1 + a + 2 = 4a + 2 chia 4 dư 2 
=> dù cho chọn 4 số TN Liên tiếp thì tổng của chúng khi chia 4 luôn dư 2

bài này trong sbt 6 giữa giai xem mà mấy bài này gọi a là ra dễ lắm

27 tháng 7 2015

1. gọi 3 stn liên tiếp là n,n+1,n+2

ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3

2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3

ta có n+n+1+n+2+n+3 = 4n+6 

vì 4n ; hết cho 4 mà 6 : hết cho 4

=> 4n+6 ko : hết cho 4

3. gọi 2 stn liên tiếp đó là a,b

ta có a=5q + r

b=5q+r

a-b = ( 5q +r) - (5q1+r)

= 5q - 5q1

= 5(q-q1) : hết cho 5