tìm giá trị của biến số x để phân thức sau bằng 0 : a. x^3 - 16x / x^3 - 3x^2 - 4x
mn làm nhanh giúp m câu này với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x ≠ -5.
b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5
c) Ta có P = 1 Û x = -4 (TMĐK)
d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
a: Để A là số nguyên thì
x^3-2x^2+4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
b: Để B là số nguyên thì
\(3x^3-x^2-6x^2+2x+9x-3+2⋮3x-1\)
=>\(3x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{\dfrac{2}{3};0;1;-\dfrac{1}{3}\right\}\)
Điều kiện: \(x\ne2\)
Phân tích tử thức: \(x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\)
Phân tích mẫu thức: \(x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)\)
\(=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
Ta có: \(P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)
Để P là số nguyên thì \(x-2\inƯ\left(4\right)\)
\(\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}\)
Điều kiện: x\ne2x̸=2
Phân tích tử thức: x^4-16=\left(x^2\right)^2-4^2=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)x4−16=(x2)2−42=(x2−4)(x2+4)=(x−2)(x+2)(x2+4)
Phân tích mẫu thức: x^4-4x^3+8x^2-16x+16=\left(x^4-4x^3+4x^2\right)+\left(4x^2-16x+16\right)x4−4x3+8x2−16x+16=(x4−4x3+4x2)+(4x2−16x+16)
=x^2\left(x^2-4x+4\right)+4\left(x^2-4x+4\right)=\left(x-2\right)^2\left(x^2+4\right)=x2(x2−4x+4)+4(x2−4x+4)=(x−2)2(x2+4)
Ta có: P=\frac{\left(x-2\right)\left(x+2\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}P=(x−2)2(x2+4)(x−2)(x+2)(x2+4)=x−2x+2=x−2(x−2)+4=1+x−24
Để P là số nguyên thì x-2\inƯ\left(4\right)x−2∈Ư(4)
\Rightarrow x-2\in\left\{-4;-2;-1;1;2;4\right\}⇒x−2∈{−4;−2;−1;1;2;4}
\Rightarrow x\in\left\{-2;0;1;3;4;6\right\}⇒x∈{−2;0;1;3;4;6}
Ta có : \(\frac{x^3-16x}{x^3-3x^2-4x}=0\)
\(\Rightarrow\frac{x\left(x^2-16\right)}{x\left(x^2-3x-4\right)}=0\)
\(\Rightarrow\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}=0\)
\(\Rightarrow x\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)
Nếu x = 4
thì x - 4 = 0
\(\Rightarrow x\left(x-4\right)\left(x+1\right)=0\)
\(\Rightarrow\) Phân thức \(\frac{x\left(x+4\right)\left(x-4\right)}{x\left(x-4\right)\left(x+1\right)}\) không tồn tại
\(\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)