K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

Xét:

\(\frac{a^4}{(a+b)(a^2+b^2)}+\frac{b^4}{(b+c)(b^2+c^2)}+\frac{c^4}{(c+a)(c^2+a^2)}-\left[\frac{b^4}{(a+b)(a^2+b^2}+\frac{c^4}{(b+c)(b^+c^2)}+\frac{a^4}{(c+a)(c^2+a^2)}\right]\)

\(=\frac{a^4-b^4}{(a+b)(a^2+b^2)}+\frac{b^4-c^4}{(b+c)(b^2+c^2)}+\frac{c^4-a^4}{(c+a)(c^2+a^2)}=a-b+b-c+c-a=0\)

\(\Rightarrow \frac{a^4}{(a+b)(a^2+b^2)}+\frac{b^4}{(b+c)(b^2+c^2)}+\frac{c^4}{(c+a)(c^2+a^2)}=\frac{b^4}{(a+b)(a^2+b^2}+\frac{c^4}{(b+c)(b^+c^2)}+\frac{a^4}{(c+a)(c^2+a^2)}\)

\(\Rightarrow 2P=\frac{a^4+b^4}{(a+b)(a^2+b^2)}+\frac{b^4+c^4}{(b+c)(b^2+c^2)}+\frac{c^4+a^4}{(c+a)(c^2+a^2)}\)

Áp dụng hệ quả quen thuộc của BĐT AM-GM: \(x^2+y^2\geq \frac{(x+y)^2}{2}\) ta có:

\(a^4+b^4\geq \frac{(a^2+b^2)^2}{2}\)

\(a^2+b^2\geq \frac{(a+b)^2}{2}\)

\(\Rightarrow a^4+b^4\geq \frac{(a^2+b^2).\frac{(a+b)^2}{2}}{2}=\frac{(a^2+b^2)(a+b)^2}{4}\)

\(\Rightarrow \frac{a^4+b^4}{(a+b)(a^2+b^2)}\geq \frac{a+b}{4}\). Tương tự với các phân thức còn lại:

\(\Rightarrow 2P\geq \frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}=2\)

\(\Rightarrow P\geq 1\). Vậy \(P_{\min}=1\Leftrightarrow a=b=c=\frac{4}{3}\)

20 tháng 11 2018

\(a=b=c=\dfrac{4}{3}\Rightarrow P=1\)

Ta se cm \(P=1\) la GTNN cua P hay \(Σ\dfrac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge1\)

C-S: \(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{Σ\left(a+b\right)\left(a^2+b^2\right)}\)

Hay ta can cm bdt \(\dfrac{\left(a^2+b^2+c^2\right)^2}{Σ\left(a+b\right)\left(a^2+b^2\right)}\ge1=\dfrac{a+b+c}{4}\)

\(\Leftrightarrow4\left(a^2+b^2+c^2\right)^2\ge\left(a+b+c\right)\left(Σ\left(a+b\right)\left(a^2+b^2\right)\right)\)

\(\LeftrightarrowΣ\left(a-b\right)^2\left(a^2+b^2+c^2-ab\right)\ge0\)

19 tháng 6 2016

Lần sau bạn vào fx viết đề cho rõ nhé :))

\(Gt\Leftrightarrow a^2+b^2+ab=c^2+d^2+cd\)

Bình 2 vế đc:

\(a^4+b^4+2a^3b+2ab^3+3a^2b^2\)\(=c^4+d^4+2c^3d+2cd^3+3c^2d^2\)

\(\Leftrightarrow2\left(a^4+b^4+2a^3b+2ab^3+3a^2b^2\right)\)\(=2\left(c^4+d^4+2c^3d+2cd^3+3c^2d^2\right)\)

\(\Leftrightarrow a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)

30 tháng 1 2017

mình nhầm.câu hỏi 2=-1

16 tháng 10 2015

a/b=c/d=k 

=> a=bk, c=dk

thế vào các biểu thức đó rồi sử dụng phân phối

2 tháng 7 2021

\(a)\)

Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow3a3b=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)

\(\Leftrightarrow\frac{3a}{3b}=\frac{3a+2c}{3b+2d}\)hay \(\frac{a}{b}=\frac{3a+2c}{3b+2d}\)

8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

15 tháng 8 2018

a, \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left(c-b\right)+c^2a^2\left[\left(c-b\right)-\left(a-b\right)\right]\)

\(=a^2b^2\left(a-b\right)-b^2c^2\left(c-b\right)+c^2a^2\left(c-b\right)-c^2a^2\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2b^2-c^2a^2\right)-\left(c-b\right)\left(b^2c^2-c^2a^2\right)\)

\(=\left(a-b\right)a^2\left(b-c\right)\left(b+c\right)-\left(b-c\right)c^2\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-c^2a-c^2b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[ac\left(a-c\right)+b\left(a-c\right)\left(a+c\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ac+ab+bc\right)\)

b, \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

\(=a^4\left(b-a+a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

\(=a^4\left(b-a\right)+a^4\left(a-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)

\(=\left(a-b\right)\left(c^4-a^4\right)+\left(a-c\right)\left(a^4-b^4\right)\)

\(=\left(a-b\right)\left(c^2-a^2\right)\left(c^2+a^2\right)+\left(a-c\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\)

\(=\left(a-b\right)\left(a-c\right)\left[\left(a+b\right)\left(a^2+b^2\right)-\left(c+a\right)\left(c^2+a^2\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left[a^3+ab^2+a^2b+b^3-c^3-a^2c-ac^2-a^3\right]\)

\(=\left(a-b\right)\left(a-c\right)\left[a^2\left(b-c\right)+a\left(b^2-c^2\right)+\left(b^3-c^3\right)\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[a^2+a\left(b+c\right)+b^2+bc+c^2\right]\)

\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left[a^2+b^2+c^2+ab+bc+ca\right]\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2018

Lời giải:

Xét hiệu:

\(2(a^4+c^4)-(a^3+c^3)(a+c)=2(a^4+c^4)-(a^4+a^3c+ac^3+c^4)\)

\(=a^4+c^4-a^3c-ac^3=(a-c)(a^3-c^3)=(a-c)^2(a^2+ac+c^2)\geq 0\)

với mọi \(a,c>0\)

Do đó: \(2(a^4+c^4)\geq (a^3+c^3)(a+c)\Leftrightarrow \frac{a^4+c^4}{a^3+c^3}\geq \frac{a+b}{2}\)

Hoàn toàn tương tự ta có:
\(\left\{\begin{matrix} \frac{b^4+c^4}{b^3+c^3}\geq \frac{b+c}{2}\\ \frac{a^4+b^4}{a^3+b^3}\geq \frac{a+b}{2}\end{matrix}\right.\)

Cộng theo vế các BĐT thu được:

\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\geq \frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c=2018\)

Ta có đpcm.

Dấu bằng xảy ra khi $a=b=c=\frac{2018}{3}$

8 tháng 3 2018

\(\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge2018\)

\(\Leftrightarrow\dfrac{a^4+b^4}{a^3+b^3}+\dfrac{b^4+c^4}{b^3+c^3}+\dfrac{c^4+a^4}{c^3+a^3}\ge a+b+c\)

\(\LeftrightarrowΣ_{cyc}\dfrac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)\left(\dfrac{a^3}{c^3+a^3}-\dfrac{b^3}{b^3+c^3}\right)\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\dfrac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)

Dễ thấy BĐT cuối luôn đúng nên ta có ĐPCM

Dấu "=" <=> \(a=b=c=\dfrac{2018}{3}\)