K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2017

Ta có:

\(\left|H\right|=\left|\dfrac{xy+yz+zx}{xyz}\right|\le\dfrac{\left|xy\right|+\left|yz\right|+\left|zx\right|}{\left|xyz\right|}=\dfrac{1}{\left|x\right|}+\dfrac{1}{\left|y\right|}+\dfrac{1}{\left|z\right|}\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)

\(\Rightarrow H\le1\) (đpcm)

NV
1 tháng 3 2022

Đặt \(f\left(x\right)=x^n+\left(m+1\right)x-1\)

Hàm \(f\left(x\right)\) liên tục trên R

\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^n-\left(m+1\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^n\left(1-\dfrac{m+1}{x^{n-1}}-\dfrac{1}{x^n}\right)=-\infty< 0\)

\(\Rightarrow\) Luôn tồn tại một số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)

\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^n\left(1-\dfrac{m+1}{x^{n-1}}-\dfrac{1}{x^n}\right)=+\infty>0\)

\(\Rightarrow\) Luôn tồn tại một số thực \(b>0\) sao cho \(f\left(b\right)>0\)

\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên (a;b) hay pt đã cho luôn luôn có nghiệm

9 tháng 8 2018

cái này mà là toán lớp 10 à ?? ? batngo

9 tháng 8 2018

Oh my god!

Nhìn đề mà méo hiểu gì đang xảy ra ở thế giới này!